R/tsne.R

Defines functions tsne

Documented in tsne

tsne <-
function(X, initial_config = NULL, k=2, initial_dims=30, perplexity=30, max_iter = 1000, min_cost=0, epoch_callback=NULL,whiten=TRUE, epoch=100 ){
	if ('dist' %in% class(X)) {
		n = attr(X,'Size')
		}
	else 	{
		X = as.matrix(X)
		X = X - min(X)
		X = X/max(X)
		initial_dims = min(initial_dims,ncol(X))
		if (whiten) X<-.whiten(as.matrix(X),n.comp=initial_dims)
		n = nrow(X)
	}

	momentum = .5
	final_momentum = .8
	mom_switch_iter = 250

	epsilon = 500
	min_gain = .01
	initial_P_gain = 4

	eps = 2^(-52) # typical machine precision

	if (!is.null(initial_config) && is.matrix(initial_config)) {
		if (nrow(initial_config) != n | ncol(initial_config) != k){
			stop('initial_config argument does not match necessary configuration for X')
		}
		ydata = initial_config
		initial_P_gain = 1

	} else {
		ydata = matrix(rnorm(k * n),n)
	}

	P = .x2p(X,perplexity, 1e-5)$P
	P = .5 * (P + t(P))

	P[P < eps]<-eps
	P = P/sum(P)

	P = P * initial_P_gain
	grads =  matrix(0,nrow(ydata),ncol(ydata))
	incs =  matrix(0,nrow(ydata),ncol(ydata))
	gains = matrix(1,nrow(ydata),ncol(ydata))

	for (iter in 1:max_iter){
		if (iter %% epoch == 0) { # epoch
			cost =  sum(apply(P * log((P+eps)/(Q+eps)),1,sum))
			message("Epoch: Iteration #",iter," error is: ",cost)
			if (cost < min_cost) break
			if (!is.null(epoch_callback)) epoch_callback(ydata)

		}

		sum_ydata = apply(ydata^2, 1, sum)
		num =  1/(1 + sum_ydata +    sweep(-2 * ydata %*% t(ydata),2, -t(sum_ydata)))
		diag(num)=0
		Q = num / sum(num)
		if (any(is.nan(num))) message ('NaN in grad. descent')
		Q[Q < eps] = eps
		stiffnesses = 4 * (P-Q) * num
		for (i in 1:n){
			grads[i,] = apply(sweep(-ydata, 2, -ydata[i,]) * stiffnesses[,i],2,sum)
		}

		gains = ((gains + .2) * abs(sign(grads) != sign(incs)) +
				 gains * .8 * abs(sign(grads) == sign(incs)))

		gains[gains < min_gain] = min_gain

		incs = momentum * incs - epsilon * (gains * grads)
		ydata = ydata + incs
		ydata = sweep(ydata,2,apply(ydata,2,mean))
		if (iter == mom_switch_iter) momentum = final_momentum

		if (iter == 100 && is.null(initial_config)) P = P/4

	}
	ydata
}

Try the tsne package in your browser

Any scripts or data that you put into this service are public.

tsne documentation built on March 28, 2022, 9:12 a.m.