tests/testthat/test-predictions.R

test_that("recipe only", {
  load(test_path("data", "test_objects.RData"))
  grid <- collect_metrics(mt_spln_lm_grid) |>
    dplyr::select(deg_free) |>
    dplyr::distinct()

  purrr::map2(
    mt_spln_lm_grid$splits,
    mt_spln_lm_grid$.predictions,
    check_predictions,
    grid,
    obj = mt_spln_lm_grid
  )

  # initial values for Bayes opt
  init <- mt_spln_lm_bo |> dplyr::filter(.iter == 0)
  init_grid <-
    collect_metrics(mt_spln_lm_bo) |>
    dplyr::filter(.iter == 0) |>
    dplyr::select(deg_free) |>
    dplyr::distinct()

  purrr::map2(
    init$splits,
    init$.predictions,
    check_predictions,
    init_grid,
    obj = mt_spln_lm_grid
  )

  # Now search iterations with a dummy grid
  bo <- mt_spln_lm_bo |> dplyr::filter(.iter > 0)
  bo_grid <- init_grid |> dplyr::slice(1)

  purrr::map2(
    bo$splits,
    bo$.predictions,
    check_predictions,
    bo_grid,
    obj = mt_spln_lm_bo
  )
})

# ------------------------------------------------------------------------------

test_that("model only", {
  load(test_path("data", "test_objects.RData"))
  grid <-
    collect_metrics(mt_knn_grid) |>
    dplyr::select(neighbors) |>
    dplyr::distinct()

  purrr::map2(
    mt_knn_grid$splits,
    mt_knn_grid$.predictions,
    check_predictions,
    tune_df = grid,
    obj = mt_knn_grid
  )

  # initial values for Bayes opt
  init <- mt_knn_bo |> dplyr::filter(.iter == 0)
  init_grid <-
    collect_metrics(mt_knn_bo) |>
    dplyr::filter(.iter == 0) |>
    dplyr::select(neighbors) |>
    distinct()

  purrr::map2(
    init$splits,
    init$.predictions,
    check_predictions,
    init_grid,
    obj = mt_knn_bo
  )

  # Now search iterations with a dummy grid
  bo <- mt_knn_bo |> dplyr::filter(.iter > 0)
  bo_grid <- init_grid |> dplyr::slice(1)

  purrr::map2(
    bo$splits,
    bo$.predictions,
    check_predictions,
    bo_grid,
    obj = mt_knn_bo
  )
})


# ------------------------------------------------------------------------------

test_that("model and recipe", {
  load(test_path("data", "test_objects.RData"))
  grid <-
    collect_metrics(mt_spln_knn_grid) |>
    dplyr::select(deg_free, neighbors) |>
    dplyr::distinct()

  purrr::map2(
    mt_spln_knn_grid$splits,
    mt_spln_knn_grid$.predictions,
    check_predictions,
    grid,
    obj = mt_spln_knn_grid
  )

  # initial values for Bayes opt
  init <- mt_spln_knn_bo |> dplyr::filter(.iter == 0)
  init_grid <-
    collect_metrics(mt_spln_knn_bo) |>
    dplyr::filter(.iter == 0) |>
    dplyr::select(deg_free, neighbors) |>
    dplyr::distinct()

  purrr::map2(
    init$splits,
    init$.predictions,
    check_predictions,
    init_grid,
    obj = mt_spln_knn_grid
  )

  # Now search iterations with a dummy grid
  bo <- mt_spln_knn_bo |> dplyr::filter(.iter > 0)
  bo_grid <- init_grid |> dplyr::slice(1)

  purrr::map2(
    bo$splits,
    bo$.predictions,
    check_predictions,
    bo_grid,
    obj = mt_spln_knn_bo
  )
})

Try the tune package in your browser

Any scripts or data that you put into this service are public.

tune documentation built on Sept. 1, 2025, 5:10 p.m.