Nothing
aac <- function(i, data, treat.var, covs, ps.model, ps.num, sampw) {
# i: number of iterations (trees)
# data: dataset containing the treatment and the covariates
# ps.model: the boosting model to estimate p(T_i|X_i)
# ps.num: the estimated p(T_i)
GBM.fitted <- predict(ps.model, newdata = data, n.trees = floor(i), type = "response")
ps.den <- dnorm(treat.var, mean = GBM.fitted, sd = sd(treat.var - GBM.fitted))
w <- ps.num/ps.den
corr_ <- apply(covs, 2, function(c) wcor(x=c, y = treat.var, wts = w * sampw))
return(mean(abs(corr_)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.