Nothing
#' summary.twoStageTMLE
#'
#' Summarizes estimation procedure for missing 2nd stage covariates
#'
#' @param object An object of class \code{twoStageTMLE}
#' @param ... Other arguments passed to the tmle function in the tmle package
#'
#' @return A list containing the missingness model, terms, coefficients, type,
# and whether discrete or ensemble Super Learning was sused
#'
#' @export
summary.twoStage <- function(object,...){
if (!is.null(object$coef)) {
picoef <- object$coef
if (inherits(picoef, "matrix")) {
piterms <- colnames(picoef)
}else {
piterms <- names(picoef)
}
pimodel <- paste("Delta.W ~ 1")
if (length(piterms) > 1) {
pimodel <- paste("Delta.W ~ ", paste(piterms, collapse = " + "))
}
} else {
pimodel <- piterms <- picoef <- NULL
}
return(list(pimodel=pimodel, piterms=piterms, picoef=picoef, pitype=object$type,
pidiscreteSL=object$discreteSL))
}
#' print.summary.twoStageTMLE
#'
#' @param x an object of class summary.twoStageTMLE
#' @param ... additional arguments (i)
#' @importFrom tmle print.tmle
#'
#' @return print object
#' @export
#'
#'
#' @method print summary.twoStageTMLE
#'
print.summary.twoStageTMLE <- function(x,...){
if (inherits(x, "summary.twoStageTMLE")){
cat("\n Estimation of Pi (subset sampling mechanism)\n")
cat("\t Procedure:", x$twoStage$pitype)
if (!(is.null(x$twoStage$pidiscreteSL))) {
if (x$twoStage$pidiscreteSL) {
cat(", discrete")
}
else {
cat(", ensemble")
}
}
if (!(is.null(x$twoStage$piAUC))) {
cat("\t Empirical AUC =", round(x$twoStage$piAUC, 4), "\n")
}
cat("\n")
if (!(is.na(x$twoStage$picoef[1]))) {
cat("\t Model:\n\t\t", x$twoStage$pimodel, "\n")
cat("\n\t Coefficients: \n")
terms <- sprintf("%15s", x$twoStage$piterms)
extra <- ifelse(x$twoStage$picoef >= 0, " ", " ")
for (i in 1:length(x$twoStage$picoef)) {
cat("\t", terms[i], extra[i], x$twoStage$picoef[i], "\n")
}
}
cat("\n")
print(x$tmle)
}
}
#' print.twoStageTMLE
#'
#' @param x an object of class twoStageTMLE
#' @param ... additional arguments (i)
#'
#' @return print tmle results using print.tmle
#' method from tmle package
#' @importFrom tmle print.tmle
#' @export
#'
#'
#' @method print twoStageTMLE
#'
print.twoStageTMLE <- function(x,...){
cat("Subset calibration TMLE\n")
if (inherits(x, "twoStageTMLE")){
print(x$tmle)
}
}
#' summary.twoStageTMLE
#'
#' @param object an object of class twoStageTMLE
#' @param ... additional arguments (ignored)
#'
#' @return list summarizing the two-stage procedure components,
#' summary of the twoStage missingness estimation
#' summary of the tmle for estimating the parameter
#' @export
#'
#'
#' @method summary twoStageTMLE
#'
summary.twoStageTMLE <- function(object,...){
# summary for estimating Pi here
if (inherits(object, "twoStageTMLE")){
sum.twoStageTMLE <- list()
sum.twoStageTMLE$twoStage <- summary.twoStage(object$twoStage)
sum.twoStageTMLE$tmle <- summary(object$tmle)
class(sum.twoStageTMLE) <- "summary.twoStageTMLE"
return(sum.twoStageTMLE)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.