Description Usage Arguments Value Examples
classify images using raster predict
1 2 3 4 5 6 7 8 | predict_rgb(
imageFiles = NULL,
model = NULL,
inPrefix = "index_",
outPrefix = "classified_",
bandNames = NULL,
retRaster = TRUE
)
|
imageFiles |
raster*. imagestack for classification purposes must contain the required bands as needed by the model. |
model |
model. classification model |
inPrefix |
character. in frefix string |
outPrefix |
character. out prefix string |
bandNames |
character. band names |
retRaster |
boolean if TRUE a raster stack is returned |
writes a result image in tif format if retRaster an rasterstack is returned
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ## Not run:
##- required packages
require(uavRst)
require(link2GI)
##- project folder
projRootDir<-tempdir()
##-create subfolders pls notice the pathes are exported as global variables
paths<-link2GI::initProj(projRootDir = projRootDir,
projFolders = c("data/","data/ref/","output/","run/","las/"),
global = TRUE,
path_prefix = "path_")
unlink(file.path(tempdir(),"*"), force = TRUE)
##- get the tutorial data
utils::download.file("https://github.com/gisma/gismaData/raw/master/uavRst/data/ffs.zip",
file.path(tempdir(),"ffs.zip"))
unzip(zipfile = file.path(tempdir(),"ffs.zip"), exdir = tempdir())
##- assign tutorial data
imageFile <- file.path(tempdir(),"predict.tif")
load(file.path(tempdir(),"tutorialbandNames.RData"))
tutorialModel<-readRDS(file = file.path(tempdir(),"tutorialmodel.rds"))
##- start the prediction taking the non optimized model
##- please note the output is saved in the subdirectory path_output
prediction<-predict_rgb(imageFiles=imageFile,
model = tutorialModel[[1]],
bandNames = bandNames)
##- visualise the classification
raster::plot(prediction)
##+
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.