Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(ulrb)
library(dplyr)
library(tidyr)
library(ggplot2)
## -----------------------------------------------------------------------------
# Load raw OTU table from N-ICE
data("nice_raw", package = "ulrb")
# Change name of first column
nice_clean <- rename(nice_raw, Taxonomy = "X.SampleID")
# Select 16S rRNA amplicon sequencing samples
selected_samples <- c("ERR2044662", "ERR2044663", "ERR2044664","ERR2044665", "ERR2044666", "ERR2044667","ERR2044668", "ERR2044669", "ERR2044670")
# Add a column with phylogenetic units ID (OTU in this case)
nice_clean <- mutate(nice_clean, OTU = paste0("OTU_", row_number()))
# Select relevant columns
nice_clean <- select(nice_clean, selected_samples, OTU, Taxonomy)
# Separate Taxonomy column into each taxonomic level
nice_clean <- separate(nice_clean, Taxonomy, c("Domain","Kingdom","Phylum","Class","Order","Family","Genus","Species"),sep=";")
# Remove Kingdom column, because it is not used for prokaryotes
nice_clean <- select(nice_clean, -Kingdom)
# Remove eukaryotes
nice_clean <- filter(nice_clean, Domain != "sk__Eukaryota")
# Remove unclassified OTUs at phylum level
nice_clean <- filter(nice_clean, !is.na(Phylum))
# Simplify name
nice <- nice_clean
# Quick look at the table
head(nice)
## -----------------------------------------------------------------------------
nice_tidy <- prepare_tidy_data(nice, sample_names = selected_samples, samples_in = "cols")
## -----------------------------------------------------------------------------
classified_table <- define_rb(nice_tidy)
# Quick output check
colnames(classified_table)
classified_table %>%
select(OTU, Sample, Abundance,
Classification, Silhouette_scores, Cluster_median_abundance,
pam_object) %>%
head()
## -----------------------------------------------------------------------------
# Simple automation example
define_rb(nice_tidy, automatic = TRUE)
## ----fig.height = 6, fig.width = 6--------------------------------------------
# One sample as example
plot_ulrb_clustering(classified_table,
sample_id = selected_samples[1],
taxa_col = "OTU") +
labs(title = paste("Clustering for sample", selected_samples[1]))
# All samples, with centrality metric
plot_ulrb_clustering(classified_table,
taxa_col = "OTU",
plot_all = TRUE,
log_scaled = TRUE) +
labs(title = "Clustering for all samples")
## ----fig.width = 10-----------------------------------------------------------
# One sample as example
plot_ulrb_silhouette(classified_table,
sample_id = selected_samples[1],
taxa_col = "OTU") +
labs(title = paste("Silhouette plot of sample", selected_samples[1]))
#
plot_ulrb_silhouette(classified_table,
sample_id = selected_samples[1],
taxa_col = "OTU",
plot_all = TRUE) +
labs(title = "Silhouette plot of all samples")
## ----fig.width = 10-----------------------------------------------------------
# For a single sample
plot_ulrb(classified_table,
sample_id = selected_samples[1],
taxa_col = "OTU")
# For all samples
plot_ulrb(classified_table,
taxa_col = "OTU",
plot_all = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.