umxExpCov | R Documentation |
Extract the expected covariance matrix from an mxModel()
umxExpCov(object, latents = FALSE, manifests = TRUE, digits = NULL, ...)
object |
an |
latents |
Whether to select the latent variables (defaults to TRUE) |
manifests |
Whether to select the manifest variables (defaults to TRUE) |
digits |
precision of reporting. NULL (Default) = no rounding. |
... |
extra parameters (to match |
expected covariance matrix
https://openmx.ssri.psu.edu/thread/2598 Original written by https://openmx.ssri.psu.edu/users/bwiernik
umxRun()
, umxCI_boot()
Other Reporting functions:
RMSEA.MxModel()
,
RMSEA.summary.mxmodel()
,
RMSEA()
,
extractAIC.MxModel()
,
loadings.MxModel()
,
loadings()
,
residuals.MxModel()
,
tmx_show.MxMatrix()
,
tmx_show()
,
umxCI_boot()
,
umxCI()
,
umxConfint()
,
umxExpMeans()
,
umxFitIndices()
,
umxRotate()
## Not run:
require(umx)
data(demoOneFactor)
manifests = names(demoOneFactor)
m1 = umxRAM("One Factor", data = demoOneFactor, type = "cov",
umxPath("G", to = manifests),
umxPath(var = manifests),
umxPath(var = "G", fixedAt = 1)
)#'
vcov(m1) # supplied by OpenMx
umxExpCov(m1, digits = 3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.