Nothing
#' Generalized Error distribution maximum likelihood estimation
#'
#' Joint maximum likelihood estimation as implemented by [fGarch::gedFit].
#'
#' For the density function of the Student t-distribution see
#' [ged][fGarch::ged].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... currently affects nothing.
#' @return `mlged` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for the
#' parameters `mean`, `sd`, `nu` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlged(precip)
#' @seealso [ged][fGarch::ged] for the Student t-density.
#' @references Nelson D.B. (1991); Conditional Heteroscedasticity in Asset
#' Returns: A New Approach, Econometrica, 59, 347<U+2013>370.
#'
#' Fernandez C., Steel M.F.J. (2000); On Bayesian Modelling of Fat Tails and
#' Skewness, Preprint.
#' @export
mlged <- function(x, na.rm = FALSE, ...) {}
univariateML_metadata$mlged <- list(
"model" = "Generalized Error",
"density" = "fGarch::dged",
"support" = intervals::Intervals(c(-Inf, Inf), closed = c(FALSE, FALSE)),
"names" = c("mean", "sd", "nu"),
"default" = c(0, 1, 3)
)
mlged_ <- function(x, ...) {
fit <- suppressWarnings(fGarch::gedFit(x))
list(estimates = fit[["par"]], logLik = -fit$objective)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.