Nothing
#' Laplace distribution maximum likelihood estimation
#'
#' The maximum likelihood estimate of `mu` is the sample median while the
#' maximum likelihood estimate of `sigma` is mean absolute deviation
#' from the median.
#'
#' For the density function of the Laplace distribution see
#' [Laplace][extraDistr::Laplace].
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... currently affects nothing.
#' @return `mllaplace` returns an object of [class][base::class]
#' `univariateML`. This is a named numeric vector with maximum likelihood
#' estimates for `mu` and `sigma` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mllaplace(precip)
#' @seealso [Laplace][extraDistr::Laplace] for the Laplace density.
#' @references Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995)
#' Continuous Univariate Distributions, Volume 2, Chapter 24. Wiley, New York.
#' @export
mllaplace <- function(x, na.rm = FALSE, ...) {}
univariateML_metadata$mllaplace <- list(
"model" = "Laplace",
"density" = "extraDistr::dlaplace",
"support" = intervals::Intervals(c(-Inf, Inf), closed = c(FALSE, FALSE)),
"names" = c("mu", "sigma"),
"default" = c(0, 1)
)
mllaplace_ <- function(x, ...) {
mu <- stats::median(x)
sigma <- mean(abs(x - mu))
estimates <- c(mu = mu, sigma = sigma)
logLik <- -length(x) * (1 + log(2 * sigma))
list(estimates = estimates, logLik = logLik)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.