Nothing
#' Power distribution maximum likelihood estimation
#'
#' The maximum likelihood estimate of `alpha` is the maximum of `x` +
#' `epsilon` (see the details) and the maximum likelihood estimate of
#' `beta` is `1/(log(alpha)-mean(log(x)))`.
#'
#' For the density function of the power distribution see
#' [PowerDist][extraDistr::PowerDist]. The maximum likelihood estimator of
#' `alpha` does not exist, strictly
#' speaking. This is because `x` is supported `c(0, alpha)` with
#' an open endpoint on alpha in the `extraDistr` implementation of
#' `dpower`. If the endpoint was closed, `max(x)` would have been
#' the maximum likelihood estimator. To overcome this problem, we add
#' a possibly user specified `epsilon` to `max(x)`.
#'
#' @param x a (non-empty) numeric vector of data values.
#' @param na.rm logical. Should missing values be removed?
#' @param ... `epsilon` is a positive number added to `max(x)` as an to the
#' maximum likelihood. Defaults to `.Machine$double.eps^0.5`.
#' @return `mlpower` returns an object of [class][base::class] `univariateML`.
#' This is a named numeric vector with maximum likelihood estimates for
#' `alpha` and `beta` and the following attributes:
#' \item{`model`}{The name of the model.}
#' \item{`density`}{The density associated with the estimates.}
#' \item{`logLik`}{The loglikelihood at the maximum.}
#' \item{`support`}{The support of the density.}
#' \item{`n`}{The number of observations.}
#' \item{`call`}{The call as captured my `match.call`}
#' @examples
#' mlpower(precip)
#' @seealso [PowerDist][extraDistr::PowerDist] for the power density. [Pareto]
#' for the closely related Pareto distribution.
#' @references
#' Arslan, G. "A new characterization of the power distribution."
#' Journal of Computational and Applied Mathematics 260 (2014): 99-102.
#' @export
mlpower <- function(x, na.rm = FALSE, ...) {
if (na.rm) x <- x[!is.na(x)] else assertthat::assert_that(!anyNA(x))
ml_input_checker(x)
assertthat::assert_that(min(x) >= 0)
dots <- list(...)
epsilon <- if (!is.null(dots$epsilon)) {
dots$epsilon
} else {
.Machine$double.eps^0.5
}
M <- mean(log(x))
alpha <- max(x) + epsilon
beta <- 1 / (log(alpha) - M)
object <- c(
alpha = alpha,
beta = beta
)
class(object) <- "univariateML"
attr(object, "model") <- "PowerDist"
attr(object, "density") <- "extraDistr::dpower"
attr(object, "logLik") <-
length(x) * (log(beta) - beta * log(alpha) + (beta - 1) * M)
attr(object, "support") <- c(0, alpha)
attr(object, "n") <- length(x)
attr(object, "call") <- match.call()
object
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.