Nothing
#' @importFrom methods is
#' @importFrom stats quantile sd coef
#' @importFrom utils packageVersion
ICC_lsm <- "model{
for(j in 1:J){
# latent betas
beta_raw_l[j] ~ dnorm(0, 1)
# random effect
beta_l[j] <- fe_mu + tau_mu * beta_raw_l[j]
# cholesky
z2[j] ~ dnorm(0, 1)
beta_raw_s[j] = rho12 * beta_raw_l[j] + sqrt(1 - rho12^2) * z2[j]
beta_s[j] <- fe_sd + tau_sd * beta_raw_s[j]
}
for(i in 1:N){
# likelihood
y[i] ~ dnorm(beta_l[ID[i]], 1/exp(beta_s[ID[i]])^2)
}
# fixed effects priors
fe_mu ~ dnorm(0, 1)
fe_sd ~ dnorm(0, 1)
# random effects priors
tau_mu ~ dt(0, pow(prior_scale,-2), 10)T(0,)
tau_sd ~ dt(0, pow(prior_scale,-2), 10)T(0,)
# prior for RE correlation
fz ~ dnorm(0, 1)
rho12 = tanh(fz)
}"
ICC_customary <- "model{
for(j in 1:J){
# latent betas
beta_raw[j] ~ dnorm(0, 1)
# random effect
beta[j] <- fe_mu + tau_mu * beta_raw[j]
}
for(i in 1:N){
# likelihood
y[i] ~ dnorm(beta[ID[i]], prec)
}
# fixed effects priors
fe_mu ~ dnorm(0, 1)
# random effects priors
tau_mu ~ dt(0, pow(prior_scale,-2), 10)T(0,)
prec ~ dgamma(1.0E-4,1.0E-4)
sigma <- 1/sqrt(prec)
}"
ICC_pick_tau <- "model{
for(j in 1:J){
# latent betas
beta_raw_l[j] ~ dnorm(0, 1)
# random effect
beta_l[j] <- fe_mu + tau_mu * beta_raw_l[j]
# cholesky
z2[j] ~ dnorm(0, 1)
beta_raw_s[j] = rho12 * beta_raw_l[j] + sqrt(1 - rho12^2) * z2[j]
beta_s[j] <- fe_sd + tau_new * beta_raw_s[j]
}
for(i in 1:N){
# likelihood
y[i] ~ dnorm(beta_l[ID[i]], 1/exp(beta_s[ID[i]])^2)
}
# fixed effects priors
fe_mu ~ dnorm(0, 1)
fe_sd ~ dnorm(0, 1)
# random effects priors
tau_mu ~ dgamma(1.0E-4,1.0E-4)
tau_sd ~ dt(0, pow(prior_scale,-2), 10)T(0,)
pick_tau ~ dbern(inc_prob)
tau_new <- tau_sd * pick_tau
# prior for RE correlation
fz ~ dnorm(0, 1)
rho12 = tanh(fz)
}"
ICC_pick_id <- "model{
for(j in 1:J){
pick_id[j] ~ dbern(inc_prob)
# latent betas
beta_raw_l[j] ~ dnorm(0, 1)
# random effect
beta_l[j] <- fe_mu + tau_mu * beta_raw_l[j]
# cholesky
z2[j] ~ dnorm(0, 1)
beta_raw_s[j] = rho12 * beta_raw_l[j] + sqrt(1 - rho12^2) * z2[j]
beta_new[j] <- beta_raw_s[j] * pick_id[j]
beta_s[j] <- fe_sd + (tau_sd * beta_new[j])
}
for(i in 1:N){
# likelihood
y[i] ~ dnorm(beta_l[ID[i]], 1/exp(beta_s[ID[i]])^2)
}
# fixed effects priors
fe_mu ~ dnorm(0, 1)
fe_sd ~ dnorm(0, 1)
# random effects priors
tau_mu ~ dt(0, pow(prior_scale,-2), 10)T(0,)
tau_sd ~ dt(0, pow(prior_scale,-2), 10)T(0,)
# prior for RE correlation
fz ~ dnorm(0, 1)
rho12 = tanh(fz)
}"
globalVariables(c("group_color",
"group",
"Post.mean",
"Cred.lb",
"Cred.ub",
"PIP"))
viccStartupMessage <- function(){
msg <- c(paste0(
"
_______ _____ _____
/|| // //
____ //|| // //
\\\\ // || || ||
\\\\ // || || ||
\\ / || \\\\ \\\\
/ ___||__ \\\\___\\\\____
", "\nVersion ", packageVersion("vICC")),
"\nType 'citation(\"vICC\")' for citing this R package.")
return(msg)
}
.onAttach <- function(lib, pkg){
# startup message
msg <- viccStartupMessage()
if(!interactive())
msg[1] <- paste("Package 'vICC' version", packageVersion("vICC"))
packageStartupMessage(msg)
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.