Description Usage Arguments Details Value Author(s) References Examples
Calculates the Akaike information criterion (AIC) from observed values, predicted values, the number of observations and the number of model parameters.
1 | aic(o, p, k)
|
o |
A numeric vector. Observed values. |
p |
A numeric vector. Predicted values. |
k |
A number. The number of parameters in the model. Note that k includes the intercept, so for example, k is 2 for a linear regression model. |
Interpretation: smaller is better. Akaike information criterion (AIC) punishes complexity of models; a larger number of parameters (k) means a larger AIC value. As it is sensitive to the number of samples, AIC cannot easily be compared between datasets of different sizes.
Akaike information criterion (AIC)
Kristin Piikki, Johanna Wetterlind, Mats Soderstrom and Bo Stenberg, E-mail: kristin.piikki@slu.se
Piikki K., Wetterlind J., Soderstrom M., Stenberg B. (2021). Perspectives on validation in digital soil mapping of continuous attributes. A review. Soil Use and Management. doi: 10.1111/sum.12694
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.