Nothing
#' @title msdr
#' @description Calculates the Mean squared deviation ratio (msdr) from observed
#'and predicted values.
#' @inherit mae return author
#' @inheritParams mae
#' @return Mean squared deviation ratio (msdr)
#' @details Interpretation: closer to 1 is better. Sometimes called standardised
#' squared predictor error (SSPE) or scaled root mean squared error (SRMSE).
#' @references Piikki K., Wetterlind J., Soderstrom M., Stenberg B. (2021). Perspectives
#' on validation in digital soil mapping of continuous attributes. A review.
#' Soil Use and Management. \doi{10.1111/sum.12694}
#' @references Voltz, M., & Webster, R. (1990). A comparison of kriging, cubic
#' splines and classification for predicting soil properties from sample
#' information. Journal of soil Science, 41(3), 473-490. (there called:
#' standardized square deviation).
#' @examples
#' obs<-c(1:10)
#' pred<-c(1, 1 ,3, 2, 4, 5, 6, 8, 7, 10)
#' msdr(o=obs, p=pred)
#'
#' @export
msdr<-function(o, p){
mse(o,p)/stats::var(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.