coindep_test | R Documentation |
Performs a test of (conditional) independence of 2 margins in a contingency table by simulation from the marginal distribution of the input table under (conditional) independence.
coindep_test(x, margin = NULL, n = 1000,
indepfun = function(x) max(abs(x)), aggfun = max,
alternative = c("greater", "less"),
pearson = TRUE)
x |
a contingency table. |
margin |
margin index(es) or corresponding name(s) of the conditioning variables. Each resulting conditional table has to be a 2-way table. |
n |
number of (conditional) independence tables to be drawn. |
indepfun |
aggregation function capturing independence in (each conditional) 2-way table. |
aggfun |
aggregation function aggregating the test statistics
computed by |
alternative |
a character string specifying the alternative
hypothesis; must be either |
pearson |
logical. Should the table of Pearson residuals under
independence be computed and passed to |
If margin
is NULL
this computes a simple independence
statistic in a 2-way table. Alternatively, margin
can give
several conditioning variables and then conditional independence in
the resulting conditional table is tested.
By default, this uses a (double) maximum statistic of Pearson residuals.
By changing indepfun
or aggfun
a (maximum of) Pearson Chi-squared
statistic(s) can be computed or just the usual Pearson Chi-squared statistics
and so on. Other statistics can be computed by changing pearson
to FALSE
.
The function uses r2dtable
to simulate the distribution
of the test statistic under the null.
A list of class "coindep_test"
inheriting from "htest"
with following components:
statistic |
the value of the test statistic. |
p.value |
the |
method |
a character string indicating the type of the test. |
data.name |
a character string giving the name(s) of the data. |
observed |
observed table of frequencies |
expctd |
expected table of frequencies |
residuals |
corresponding Pearson residuals |
margin |
the |
dist |
a vector of size |
qdist |
the corresponding quantile function (for computing critical values). |
pdist |
the corresponding distribution function (for computing
|
Achim Zeileis Achim.Zeileis@R-project.org
chisq.test
,
fisher.test
,
r2dtable
library(MASS)
TeaTasting <- matrix(c(3, 1, 1, 3), nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),
Truth = c("Milk", "Tea"))
)
## compute maximum statistic
coindep_test(TeaTasting)
## compute Chi-squared statistic
coindep_test(TeaTasting, indepfun = function(x) sum(x^2))
## use unconditional asymptotic distribution
chisq.test(TeaTasting, correct = FALSE)
chisq.test(TeaTasting)
data("UCBAdmissions")
## double maximum statistic
coindep_test(UCBAdmissions, margin = "Dept")
## maximum of Chi-squared statistics
coindep_test(UCBAdmissions, margin = "Dept", indepfun = function(x) sum(x^2))
## Pearson Chi-squared statistic
coindep_test(UCBAdmissions, margin = "Dept", indepfun = function(x) sum(x^2), aggfun = sum)
## use unconditional asymptotic distribution
loglm(~ Dept * (Gender + Admit), data = UCBAdmissions)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.