| vcrpart-demo | R Documentation |
Synthetic data for illustrations.
data(vcrpart_1)
data(vcrpart_2)
data(vcrpart_3)
data(unemp)
yordered factor. The response variable
id, PIDfactor. The subject identification vector.
wavenumeric. The wave identification vector.
treata dummy variable. The treatment effect.
x1, x2numeric predictor variables.
z1, z2, z3, z2moderator (partitioning) variables.
GHQLself rated general happiness.
YEARsurvey year.
UNEMPunemployed or not.
AGEage.
FISITself-reported financial situation.
GENDERgender.
UEREGIONregional unemployment.
olmm, otsplot,
tvcm
## --------------------------------------------------------- #
## generating 'vcrpart_1'
## --------------------------------------------------------- #
## create skeletton
set.seed(1)
vcrpart_1 <- data.frame(id = factor(rep(1:50, each = 4)),
wave = rep(1:4, 50),
treat = sample(0:1, 200, TRUE))
## add partitioning variables
vcrpart_1$z1 <- rnorm(50)[vcrpart_1$id]
vcrpart_1$z2 <- rnorm(200)
vcrpart_1$z3 <- factor(sample(1:2, 50, TRUE)[vcrpart_1$id])
vcrpart_1$z4 <- factor(sample(1:2, 200, TRUE))
## simulate response
eta <- 2 * vcrpart_1$treat * (vcrpart_1$z4 == "1")
eta <- eta + rnorm(50)[vcrpart_1$id] + rlogis(200)
vcrpart_1$y <- cut(-eta, c(-Inf, -1, 1, Inf), 1:3,
ordered_result = TRUE)
## --------------------------------------------------------- #
## generating 'vcrpart_2'
## --------------------------------------------------------- #
set.seed(1)
vcrpart_2 <- data.frame(x1 = rnorm(100),
x2 = rnorm(100),
z1 = factor(sample(1:3, 100, TRUE)),
z2 = factor(sample(1:3, 100, TRUE)))
vcrpart_2$y <- vcrpart_2$x1 * (vcrpart_2$z1 == "2") +
2 * vcrpart_2$x1 * (vcrpart_2$z1 == "3")
vcrpart_2$y <- vcrpart_2$y + rnorm(100)
## --------------------------------------------------------- #
## generating 'vcrpart_3'
## --------------------------------------------------------- #
set.seed(1)
vcrpart_3 <- data.frame(x1 = rnorm(100),
z1 = runif(100, -pi/2, pi/2))
vcrpart_3$y <- vcrpart_3$x1 * sin(vcrpart_3$z1) + rnorm(100)
## --------------------------------------------------------- #
## generating 'unemp'
## --------------------------------------------------------- #
## create skeletton
set.seed(1)
unemp <- data.frame(PID = factor(rep(1:50, each = 4)),
UNEMP = rep(c(0, 0, 1, 1), 50),
YEAR = rep(2001:2004, 50))
## add partitioning variables
unemp$AGE <- runif(50, 25, 60)[unemp$PID] + unemp$YEAR - 2000
unemp$FISIT <- ordered(sample(1:5, 200, replace = TRUE))
unemp$GENDER <- factor(sample(c("female", "male"), 50, replace = TRUE)[unemp$PID])
unemp$UEREGION <- runif(50, 0.02, 0.1)[unemp$PID]
## simulate response
eta <- 2 * unemp$UNEMP * (unemp$FISIT == "1" | unemp$FISIT == "2")
eta <- eta + rnorm(50)[unemp$PID] + rlogis(200)
unemp$GHQL <- cut(-eta, c(-Inf, -1, 0, 1, Inf), 1:4,
ordered_result = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.