Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",size = 10,
fig.height = 6,
fig.width = 6
)
## ----include=FALSE------------------------------------------------------------
##Load package
library(vectorsurvR)
## ----results='hide', eval=F---------------------------------------------------
#
# token = getToken()
#
## ----eval=F, echo=T-----------------------------------------------------------
# #Example
# collections = getArthroCollections(token, 2022,2023, 'mosquito',55)
## ----eval=F, echo=T-----------------------------------------------------------
# #Example
# pools = getPools(token, 2022,2023, 'mosquito')
## ----eval=F, echo=T-----------------------------------------------------------
# #creates a file named "collections_18_23.csv" in your current directory
# write.csv(x = collections, file = "collections_22_23.csv")
#
# #loads collections data
# collections = read.csv("collections_22_23.csv")
#
## -----------------------------------------------------------------------------
#Subset using column names or index number
colnames(sample_collections) #displays column names and associated index
#Subseting by name
head(sample_collections[c("collection_date", "species_display_name", "num_count")])
#by index
head(sample_collections[c(2, 4, 10)])
#to save a subset
collections_subset = sample_collections[c(2, 4, 10)]
## -----------------------------------------------------------------------------
#NOTE: library was loaded above
library(dplyr)
#Subsetting columns with 'select()'
sample_collections %>%
dplyr::select(collection_date, species_display_name, num_count) %>% head()
## -----------------------------------------------------------------------------
#filtering with dplyr 'filter'
collections_pip = sample_collections %>%
filter(species_display_name == "Cx pipiens")
#filtering multiple arguments using '%in%'
collections_pip_tar = sample_collections %>%
filter(species_display_name %in% c("Cx pipiens", "Cx tarsalis"))
## -----------------------------------------------------------------------------
#groups by species and collection date and sums the number counted
sample_collections %>%
group_by(collection_date, species_display_name) %>%
summarise(sum_count = sum(num_count, na.rm = T)) %>%
head()
#groups by species and collection date and takes the average the number counted
sample_collections %>%
group_by(collection_date, species_display_name) %>%
summarise(avg_count = mean(num_count, na.rm = T)) %>%
head()
## -----------------------------------------------------------------------------
library(tidyr)
collections_wide = pivot_wider(
sample_collections,
names_from = c("species_display_name","sex_type"),
values_from = "num_count"
)
## -----------------------------------------------------------------------------
getAbundance(
sample_collections,
interval = "Biweek",
species = c("Cx tarsalis", "Cx pipiens"),
trap = "CO2",
separate_by = NULL
)
## -----------------------------------------------------------------------------
getAbundanceAnomaly(sample_collections,
interval = "Biweek",
target_year = 2020,
species = c("Cx tarsalis", "Cx pipiens"),
trap = "CO2",
separate_by = "species")
## -----------------------------------------------------------------------------
getInfectionRate(sample_pools,
interval = "Week",
target_disease = "WNV",
pt_estimate = "mle",
scale = 1000,
species = c("Cx pipiens", "Cx tarsalis"),
trap = c("CO2"),
separate_by="species")
## -----------------------------------------------------------------------------
getVectorIndex(sample_collections,
sample_pools,
interval = "Biweek",
target_disease = "WNV",
pt_estimate = "bc-mle",
separate_by = c("agency","species"))
sample_collections%>%filter(species_display_name=="Cx tarsalis", trap_acronym=="CO2")
## -----------------------------------------------------------------------------
getPoolsComparisionTable(
sample_pools,
interval = "Week",
target_disease = "WNV"
)
## -----------------------------------------------------------------------------
library(kableExtra)
AbAnOutput = getAbundance(
sample_collections,
interval = "Biweek",
species = c("Cx tarsalis", "Cx pipiens"),
trap = "CO2",
separate_by = "species")
head(AbAnOutput)
#kable table where column names, font_size, style and much more can be customized
AbAnOutput %>%
kbl() %>%
kable_styling(
bootstrap_options = "striped",
font_size = 14,
latex_options = "scale_down"
) %>%
footnote(general = "Table X: Combined biweekly Abundance Calculation for Cx. tarsalis, pipiens in CO2 traps", general_title = "")
## -----------------------------------------------------------------------------
library(DT)
AbAnOutput %>%
datatable(colnames = c("Disease Year", "Biweek", "Count", "Species","Trap Type","Trap Events", "Abundance"))
## -----------------------------------------------------------------------------
table(vectorsurvR:::testing_collections$trap_acronym, vectorsurvR:::testing_collections$surv_year) %>%
kbl(align = "c") %>%
kable_paper(
full_width = F,
html_font = "arial",
lightable_options = "striped",
) %>%
add_header_above(c("Trap Type", "Years" = 6)) %>%
footnote(general = "Table 3: Traps deployed by year", general_title = "") %>%
row_spec(c(3, 9, 10), background = "yellow") %>%
column_spec(c(4), background = "orange")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.