Description Usage Arguments Value Author(s) References Examples
Compute quadruple wavelet coherence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
y |
time series 1 in matrix format ( |
x1 |
time series 2 in matrix format ( |
x2 |
time series 3 in matrix format ( |
x3 |
time series 4 in matrix format ( |
pad |
pad the values will with zeros to increase the speed of the transform. Default is TRUE. |
dj |
spacing between successive scales. Default is 1/12. |
s0 |
smallest scale of the wavelet. Default is |
J1 |
number of scales - 1. |
max.scale |
maximum scale. Computed automatically if left unspecified. |
mother |
type of mother wavelet function to use. Can be set to
|
param |
nondimensional parameter specific to the wavelet function. |
lag1 |
vector containing the AR(1) coefficient of each time series. |
sig.level |
significance level. Default is |
sig.test |
type of significance test. If set to 0, use a regular χ^2 test. If set to 1, then perform a time-average test. If set to 2, then do a scale-average test. |
nrands |
number of Monte Carlo randomizations. Default is 300. |
quiet |
Do not display progress bar. Default is |
Return a vectorwavelet
object containing:
coi |
matrix containg cone of influence |
rsq |
matrix of wavelet coherence |
phase |
matrix of phases |
period |
vector of periods |
scale |
vector of scales |
dt |
length of a time step |
t |
vector of times |
xaxis |
vector of values used to plot xaxis |
s0 |
smallest scale of the wavelet |
dj |
spacing between successive scales |
mother |
mother wavelet used |
type |
type of |
signif |
matrix containg |
Tunc Oygur (info@tuncoygur.com.tr)
T. Oygur, G. Unal.. Vector wavelet coherence for multiple time series. Int. J. Dynam. Control (2020).
T. Oygur, G. Unal. 2017. The large fluctuations of the stock return and financial crises evidence from Turkey: using wavelet coherency and VARMA modeling to forecast stock return. Fluctuation and Noise Letters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | old.par <- par(no.readonly=TRUE)
t <- (-100:100)
y <- sin(t*2*pi)+sin(t*2*pi/4)+sin(t*2*pi/8)+sin(t*2*pi/16)+sin(t*2*pi/32)+sin(t*2*pi/64)
x1 <- sin(t*2*pi/16)
x2 <- sin(t*2*pi/32)
x3 <- sin(t*2*pi/64)
y <- cbind(t,y)
x1 <- cbind(t,x1)
x2 <- cbind(t,x2)
x3 <- cbind(t,x3)
## Quadruple wavelet coherence
result <- qmwc(y, x1, x2, x3, nrands = 10)
result <- qmwc(y, x1, x2, x3)
## Plot wavelet coherence and make room to the right for the color bar
## Note: plot function can be used instead of plot.vectorwavelet
par(oma = c(0, 0, 0, 1), mar = c(5, 4, 4, 5) + 0.1, pin = c(3,3))
plot.vectorwavelet(result, plot.cb = TRUE, main = "Plot quadruple wavelet coherence")
par(old.par)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.