Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
message = FALSE,
out.width = "95%", # figures occupy ~95% of document width
out.height = "auto",
dpi = 320, # ensure figure quality
fig.width = 6, # default aspect ratio (can be overridden per-figure)
fig.height = 3
)
options(rmarkdown.html_vignette.check_title = FALSE)
## ----setup, echo=TRUE, eval=FALSE---------------------------------------------
# # Load necessary packages ----
# library(visOmopResults)
# library(IncidencePrevalence)
# library(CohortCharacteristics)
# library(dplyr)
# library(tidyr)
# library(ggplot2)
#
# # Load mock results stored in the package ----
# data <- visOmopResults::data
#
# # Global options ----
# knitr::opts_chunk$set(
# out.width = "95%", # figures occupy ~95% of document width
# out.height = "auto",
# dpi = 320, # ensure figure quality
# fig.width = 6, # default aspect ratio (can be overridden per-figure)
# fig.height = 3,
# results = "asis" # enable Markdown produced via cat() inside chunks
# )
#
# # DARWIN style for visOmopResults plots and tables.
# style <- "darwin"
# tableType <- "flextable"
# plotType <- "ggplot"
# setGlobalPlotOptions(style = style, type = plotType)
# setGlobalTableOptions(style = style, type = tableType)
## ----echo=FALSE---------------------------------------------------------------
# Load necessary packages ----
library(visOmopResults)
library(IncidencePrevalence)
library(CohortCharacteristics)
library(dplyr)
library(tidyr)
library(ggplot2)
# Load mock results stored in the package ----
reportData <- system.file("mockReportData.RData", package = "visOmopResults")
load(reportData) # loads an object named `data` containing mock results
# DARWIN style for visOmopResults plots and tables.
style <- "darwin"
tableType <- "flextable"
plotType <- "ggplot"
setGlobalPlotOptions(style = style, type = plotType)
setGlobalTableOptions(style = style, type = tableType)
## -----------------------------------------------------------------------------
data$summarised_characteristics |>
dplyr::filter(variable_name != "Sex") |>
tableCharacteristics(
header = c("sex"),
hide = c("cdm_name", "cohort_name", "table_name"),
type = tableType,
style = style
)
## -----------------------------------------------------------------------------
data$summarised_characteristics |>
dplyr::filter(variable_name != "Sex") |>
dplyr::mutate(
variable_name = customiseText(
variable_name,
custom = c(
"Comorbidities" = "Comorbidities flag -inf to 0",
"Comedications" = "Comedications flag -180 to 0"
)
),
variable_level = customiseText(
variable_level,
custom = c("HIV" = "Hiv")
)
) |>
visOmopTable(
header = c("sex"),
estimateName = c(
"N (%)" = "<count> (<percentage>%)",
"N" = "<count>",
"Median [Q25 - Q75]" = "<median> [<q25> - <q75>]",
"Mean (SD)" = "<mean> (<sd>)",
"Range" = "<min> to <max>"
),
factor = list(
"sex" = c("overall", "Male", "Female"),
"variable_name" = c(
"Number records", "Number subjects", "Age", "Days in cohort", "Prior observation",
"Future observation", "Cohort start date", "Cohort end date",
"Comedications", "Comorbidities"
),
"variable_level" = c(NA, "Asthma", "Depression", "HIV", "Opioids", "Antidiabetes")
),
hide = c("cdm_name", "cohort_name")
)
## -----------------------------------------------------------------------------
data$summarised_characteristics |>
dplyr::filter(variable_name %in% c("Number records")) |>
plotCharacteristics(colour = "sex") +
themeVisOmop(style = style) +
coord_flip()
## -----------------------------------------------------------------------------
data$incidence |>
dplyr::filter(strata_name == "sex") |>
plotIncidence(colour = "sex", facet = "sex", ribbon = TRUE) +
themeVisOmop(style = style) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))
## ----message=TRUE-------------------------------------------------------------
data$measurement_change
## -----------------------------------------------------------------------------
data$measurement_change |>
tidyr::pivot_longer(
cols = c("median", "min", "max", "q25", "q75"),
names_to = "estimate_name",
values_to = "estimate_value"
) |>
dplyr::mutate(
estimate_type = "numeric",
estimate_value = as.character(estimate_value),
variable_name = customiseText(variable_name),
sex = customiseText(sex)
) |>
visTable(
header = "sex",
estimateName = c(
"Median [Q25 - Q75]" = "<median> [<q25> - <q75>]",
"Range" = "<min> to <max>"
),
hide = c("cohort_name", "estimate_type"),
rename = c("Estimate" = "estimate_name", "Variable" = "variable_name")
)
## -----------------------------------------------------------------------------
data$measurement_change |>
dplyr::filter(variable_name %in% c("value_before", "value_after")) |>
dplyr::mutate(
variable_name = customiseText(variable_name),
sex = customiseText(sex)
) |>
boxPlot(x = "variable_name", facet = "sex", colour = "variable_name") +
theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) +
xlab("")
## ----eval=FALSE---------------------------------------------------------------
# num_table <- 1
# cat(paste0(
# ':::{custom-style="Caption"}\n',
# '**Table ', num_table, ':** Baseline population characteristics.\n',
# ':::\n'
# ))
# num_table <- num_table + 1
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.