Nothing
#' Contour plots and MCA function for classification modeling
#'
#' This function is similar to mcacontour but points are jittered in every plot
#' @usage mcacontourjit(dataf=dataf,jit=0.1,alpha1=0.8,alpha2=0.8,alpha3=0.7,title="",...)
#' @inheritParams mcacontour
#' @param jit jit distance. Default 0.1.
#' @param ... options to be passed from mcacontour
#' @keywords MCA, classification, contour_curves
#' @export
#' @import MASS
#' @import ggplot2
#' @importFrom MBA mba.points
#' @importFrom magrittr %>%
#' @importFrom nnet nnet
#' @import gbm
#' @import e1071
#' @importFrom stats aggregate formula glm terms predict family binomial
#' @importFrom dplyr inner_join
#' @importFrom randomForest randomForest
#' @examples
#' data(breastwisconsin1)
#' dataf<-breastwisconsin1
#' listconti=c( "clump_thickness","uniformity_of_cell_shape","mitosis")
#' listclass=c("")
#' vardep="classes"
#' result<-mcacontourjit(dataf=dataf,listconti=listconti,listclass=listclass,vardep=vardep,jit=0.1)
#' @return A list with the following objects:\describe{
#' \item{graph1}{plot of points on MCA two dimensions}
#' \item{graph2}{plot of points and variables}
#' \item{graph3}{plot of points and contour curves}
#' \item{graph4}{plot of points, contour curves and variables}
#' \item{graph5}{plot of points colored by fitted probability}
#' \item{graph6}{plot of points colored by abs difference}
#' }
# ROXYGEN_STOP
mcacontourjit<-function(dataf=dataf,jit=0.1,
alpha1=0.8,alpha2=0.8,alpha3=0.7,title="",...)
{
minori<-numeric()
Variable=character()
x<-numeric()
y<-numeric()
z<-numeric()
dife<-numeric()
salida<-mcacontour(dataf=dataf,...)
daf<-salida[[7]]
uni<-salida[[8]]
t<-salida[[9]]
union<-salida[[10]]
colScale<-salida[[13]]
colScale2<-salida[[14]]
ejex<-salida[[15]]
ejey<-salida[[16]]
title2<-salida[[17]]
title3<-salida[[18]]
breaks=c(0,0.25,0.50,0.75,0.95,1)
miniz<-min(t$z)
maxiz<-max(t$z)
for (i in seq(1,5,by=1))
{
if (breaks[i]<=miniz & miniz<=breaks[i+1])
{minimo<-i}
if (breaks[i]<=maxiz & maxiz<=breaks[i+1])
{maximo<-i}
}
inicio=0.8-0.12*(minimo-1)
fin=0.2+0.12*(5-maximo)
jitter=position_jitter(width = jit, height = jit)
g2<-ggplot(daf, aes(x=x, y=y)) + theme_bw()+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
geom_point(aes(colour=minori,alpha =minori),position=jitter,size=1)+
scale_alpha_manual(values = c(alpha1, alpha2),guide="none")+
ggtitle(title,subtitle=title2)+
theme(
plot.title = element_text(hjust=0.5,color="blue"),
plot.subtitle= element_text(hjust=0.5,color="orangered4")
)
g2<-g2+colScale+geom_density2d(colour = "gray80",alpha=1,show.legend=FALSE)+
xlab(ejex)+ylab(ejey)+
guides(colour = guide_legend("", override.aes = list(size = 4,alpha = 1)))
g3<-g2+ geom_contour_filled(data=t, aes(x=x, y=y,z=z),alpha=0.65,breaks=breaks)+
scale_fill_grey(start=inicio,end=fin)+
ggtitle(title, subtitle = title3)+
theme(
plot.title = element_text(hjust=0.5,color="blue"),
plot.subtitle= element_text(hjust=0.5,color="orangered4")
)
g4<-ggplot(daf, aes(x=x, y=y)) + theme_bw()+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
geom_point(aes(colour=minori,alpha =minori),size=1,position=jitter)+
scale_alpha_manual(values = c(alpha1, alpha2),guide="none")
g4<-g4+geom_density2d(colour = "gray80",alpha=1,show.legend=FALSE)+
xlab(ejex)+ylab(ejey)+
geom_text(data = uni,aes(x =x, y =y,label = rownames(uni),
colour = Variable,fontface=1),size=sort(uni$tama),show.legend =F)+
colScale2
g4<-g4+ ggtitle(title, subtitle = title3)+
theme(
plot.title = element_text(hjust=0.5,color="blue"),
plot.subtitle= element_text(hjust=0.5,color="orangered4")
)+
guides(colour = guide_legend("", override.aes = list(size = 4,alpha = 1)))
g5<-g4+ geom_contour_filled(data=t, aes(x=x, y=y,z=z),alpha=0.65,breaks=breaks)+
scale_fill_grey(start=inicio,end=fin)+
ggtitle(title, subtitle = title3)+
theme(
plot.title = element_text(hjust=0.5,color="blue"),
plot.subtitle= element_text(hjust=0.5,color="orangered4")
)+
guides(colour = guide_legend("", override.aes = list(size = 4,alpha = 1)))
gradi<-ggplot(union, aes(x=x, y=y)) + theme_bw()+
geom_point(aes(colour=z),alpha =alpha3,position=jitter,size=1)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
gradi<-gradi+scale_colour_gradient(low= "green1",high = "red",name="Fitted probability")+
xlab(ejex)+ylab(ejey)+ ggtitle(title,subtitle=title3)+
theme(
plot.title = element_text(hjust=0.5,color="blue"),
plot.subtitle= element_text(hjust=0.5,color="orangered4")
)
gradi2<-ggplot(union, aes(x=x, y=y)) + theme_bw()+
geom_point(aes(fill=dife),alpha =alpha3,shape=21,color="orange",position=jitter,size=1)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
gradi2<-gradi2+scale_fill_gradient2(midpoint = 0, low = "blue", mid = "white",
high = "red", space = "Lab",name="vardep-p" )
gradi2<-gradi2+ xlab(ejex)+ylab(ejey)+ ggtitle(title,subtitle=title3)+
theme(
plot.title = element_text(hjust=0.5,color="blue"),
plot.subtitle= element_text(hjust=0.5,color="orangered4")
)
cosa<-list(g2,g4,g3,g5,gradi,gradi2)
names(cosa)<-c("graph1","graph2","graph3","graph4","graph5","graph6")
return(cosa)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.