Nothing
## Illustrations of GP regression
library(ggplot2)
set.seed(1)
y <- sample(chemo_nb, 40) / 1000000
x <- sample(chemo_pars[,"logor_side_effects"], 40)
qplot(y, x)
## So can we fit a GP regression using inbuilt tools?
## can we use gpFunc using hyperpar
# need to understand what gpFunc does and modularise it
# sets: names of POI? why not do this outside ? it does some error checking.
# it removes any parameters that are constant. Needs external warning
xpred <- seq(min(x), max(x), by=0.001)
mod <- voi:::gp(y, x, Xpred=xpred)
# lower the first par to make less smooth
# nu controls the extent of measurement error.
# Note this does not do any prediction outside the data points so the fit is jagged.
mod <- voi:::gp(y, x, hyper = c(1, 0.5637912), Xpred=xpred)
mod <- voi:::gp(y, x, hyper = c(0.5, 0.5637912), Xpred=xpred)
mod1 <- voi:::gp(y, x, hyper = c(1, 0.001), Xpred=xpred)
mod2 <- voi:::gp(y, x, hyper = c(0.5, 0.001), Xpred=xpred)
mod3 <- voi:::gp(y, x, hyper = c(0.1, 0.001), Xpred=xpred)
mod4 <- voi:::gp(y, x, hyper = c(0.01, 0.001), Xpred=xpred)
dat <- data.frame(y, x)
datpred1 <- data.frame(x=xpred, fitted=mod1$pred, delta=1)
datpred2 <- data.frame(x=xpred, fitted=mod2$pred, delta=0.5)
datpred3 <- data.frame(x=xpred, fitted=mod3$pred, delta=0.1)
datpred4 <- data.frame(x=xpred, fitted=mod4$pred, delta=0.01)
datpred <- rbind(datpred1, datpred2, datpred3)
datpred$delta <- factor(datpred$delta)
cols <- RColorBrewer::brewer.pal(4, "Greys")[2:4]
pdf("~/work/voibook/voibook/Figures/04-evppi/gp_regression.pdf", width=6, height=3)
ggplot(dat, aes(x=x, y=y)) +
geom_line(data=datpred, aes(x=x, y=fitted, col=delta), lwd=1, alpha=0.8) +
scale_color_manual(breaks=levels(datpred$delta), values=cols) +
coord_cartesian(ylim=c(0, 0.6)) +
geom_point(size=2) +
xlab("Predictor") + ylab("Outcome") +
labs(col=expression(delta)) +
theme_bw()
dev.off()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.