vrcp: Estimation for Varying Regression Segments and Change Point...

Description Usage Arguments Value References Examples

View source: R/vrcp.R

Description

Estimation of two segments and a change point in 2-segment regression models with varying variances and varying types of regression segments, with or without a smoothness constraint at the change point.

Usage

1
2
3
vrcp(dataset, lo, hi, smooth = c("c0", "c1", "u"), segment1 = c("L", "Q",
  "Log", "Exp", "NLExp"), segment2 = c("L", "Q", "Log", "Exp", "NLExp"),
  variance = c("Common", "Diff"), spline = c("FALSE", "TRUE"), start)

Arguments

dataset

either a data frame, or a matrix, containing 2 columns, where the first column contains covariate values and the second column contains response values.

lo, hi

lower and upper bounds for the x value of the change point, to be set by a user.

smooth

smoothness constraint of the regression function at the change point. Default constraint is "c0," continuous at the change point. "c1" indicates that the first derivative at the change point is continuous, while "u" indicates that there is constraint at the change point.

segment1, segment2

regression model used to compute parameters in segment1(or segment2) with additive Gaussian errors. Currently allowable models are:

L: Linear model. y ~ a0 + a1 * x

Q: Quadratic model. y ~ a0 + a1 * x + a2 * x^2

Exp: Linearizable Exponential model. y ~ a0 + a1 * exp(x)

Log: Linearizable Logarithm model. y ~ a0 + a1 * log(x)

NLExp: Nonlinearizable Exponential model. y ~ a0 + a1 * exp(a2 * (x - k)), where k is the change point in x.

These 5 models lead to the following 15 allowable combinations of varying types of segments, reflecting reasonable models we have seen from Degredation Science:

"L"-"L", "L"-"Q", "L"-"Exp", "L"-"Log", "L"-"NLExp",

"Q"-"L", "Q"-"Q", "Q"-"Exp", "Q"-"Log", and "Q"-"NLExp",

"Exp"-"L", "Exp"-"Exp",

"Log"-"L", "Log"-"Log",

and "NLExp"-"L".

variance

variance type of the data set, either "Common" that requires the variances at two segments to be the same, or "Diff" that does NOT require them to be the same.

spline

a "TRUE" or "FALSE" logical argument, where "TRUE" shows a B-spline fit with the knot at the change point, as an extra option only available for segment combinations of "L"-"L" and "Q"-"Q". The default is "FALSE".

start

a named numeric vector or a logic status "FALSE". Default is "start=FALSE", which will compute initial values automatically based on data. "start=a vector" specifies initial values of vector parameters, typically in the case with a nonlinearizable segment as specified below, where a0, a1, a2 are regression parameters for segment1, and b0, b1, b2 are regression parameters for segment2, etc:

"L"-"NLExp": 3 initial values for (a0, a1; b2) may be specified.

"Q"-"NLExp": 4 initial values for (a0, a1, a2; b2) may be specified.

"NLExp"-"L": 3 initial values for (b0, b1; a2) may be specified.

Value

maxloglik: maximum log-likelihood value.

sigma2: estimated variance(s) for two segments

coe: coefficients for two regression segments, beta = (a0,a1,a2,b0,b1,b2). No a2, b2 output for linear/linearizable segment.

changepoint: change point in x value.

References

Stephen J. Ganocy and Jiayang Sun (2015), "Heteroscedastic Change Point Analysis and Application to Footprint Data", J of Data Science, v.13.

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
library(ggplot2)

# Test the vrcp() using simulated data sets

# Example 1: L-L model with "c0", continuity at change point and common variance
# Simulate the data
x1<-seq(0,2,by=0.05)
x2<-seq(2.05,5,by=0.05)

# The true regression functions
yt1 <- 2+0.5*x1
yt2 <- -1+2*x2

# Add noises
y1<-yt1+rnorm(length(x1),0,0.25)
y2<- yt2+rnorm(length(x2),0,0.25)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a L-L regression with a change point between 1.5 and 2.5
# Fit with vrcp with L-L segments and "c0" constraint
ans <- vrcp(z,1.5,2.5,"c0","L","L","Common", spline = "TRUE") # Fit with common variance
ans

# The fitted L-L regression and spline are superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt), color = c("blue"), size=1) +
ggtitle("LL-c0-com model: Estimates vs. true model (in blue)")

ans <- vrcp(z,1.5,2.5,"c0","L","L","Diff",spline = "TRUE") # Fit with different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt), color = "blue", size=1) +
ggtitle("LL-c0-diff model: Estimates vs. true model (in blue)") # compare


## Not run: 
# Example 2: L-Log model with "c1" change point and common variance.
# Simulate the data
x1<-seq(0.05,2.05,by=0.05)
x2<-seq(2.1,5.05,by=0.05)

# The true regression functions
yt1 <- 3+1*x1
yt2 <- 3.61+2*log(x2)

# Add noises
y1<- yt1+rnorm(length(x1),0,0.5)
y2<- yt2+rnorm(length(x2),0,0.5)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)<-c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a L-Log regression with a change point between 1.9 and 2.2
# Fit with vrcp with specification of L-Log segments and "c1" options with 
# and without common variance restriction
ans <- vrcp(z,1.9,2.2,"c1","L","Log","Common")
ans

# The fitted L-Log regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LLog-c1-com model: Estimate (in magenta) vs. true model") # Fit with common variance

ans <- vrcp(z,1.9,2.5,"c1","L","Log","Diff") 
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LLog-c1-diff model: Estimate (in magenta) vs. true model") # Fit with different variance

# both fits look good

# Check what would look like with misspecification of smoothness at change point
ans <- vrcp(z,1.9,2.2,"c0","L","Log","Common") # Fit with common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LLog-c0-com fit to LLog-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"c0","L","Log","Diff") # Fit with different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LLog-c0-diff fit to LLog-c1-com model: Estimate (in magenta) vs. true model")

# both look lack of fit, especially at the change point. 
# Hence, the correct specification of model is important 


# Example 3: Log-L - Simulated data set is "c1", smooth.
# Simulate the data
x1<-seq(2,4,by=0.05)
x2<-seq(4,7,by=0.05)

# The true regression functions
yt1 <- 1.6+0.5*log(x1)
yt2 <- 1.89+0.1*x2

# Add noises
y1<- yt1+rnorm(length(x1),0,0.1)
y2<- yt2+rnorm(length(x2),0,0.1)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Log-L regression with a change point between 3.9 and 4.5
# Fit with vrcp with specification of Log-L segments and "c1" options with 
# and without common variance restriction
ans <- vrcp(z,3.9,4.5,"c1","Log","L","Common") # Fit with common variance
ans

# The fitted Log-L regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") + 
ggtitle("LogL-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,3.8,4.2,"c1","Log","L","Diff") # Fit with different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogL-c1-diff model: Estimate (in magenta) vs. true model")

# results look similar, not bad.

# Fit with Log-L segments and "c0" options with and without common variance restriction
ans <- vrcp(z,3.5,4.5,"c0","Log","L","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogL-c0-com fit to LLog-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,3.5,4.5,"c0","Log","L","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogL-c0-diff fit to LLog-c1-com model: Estimate (in magenta) vs. true model")

# Little worse than the one with c1 constraint

# Fit with Log-L segments and u" options with and without common variance restriction
ans <- vrcp(z,3.5,4.5,"u","Log","L","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LLog-u-com fit to LLog-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,3.5,4.5,"u","Log","L","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LLog-u-diff fit to LLog-c1-diff model: Estimate (in magenta) vs. true model")

# Clearly shows lack of fit at the change point.   
# Again, the correct specification of the model, or use of available information is important.


# Example 4: QL-c1-com model, fitted by Q-L and Exp-L models, 
# with and without a common variance constraint, respectively.

# Simulate Q-L data
x1<-seq(0,2,by=0.05)
x2<-seq(2,5,by=0.05)

# The true regression functions
yt1 <- 2+2*x1+2*x1^2
yt2 <- -6+10*x2

# Add noises
y1<- yt1+rnorm(length(x1),0,3)
y2<- yt2+rnorm(length(x2),0,3)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Q-L regression with a change point between 1.8 and 2.5
# Fit with vrcp with specification of Q-L segments and "c1" options with 
# and without common variance restriction
ans <- vrcp(z,1.8,2.5,"c1","Q","L","Common")  # Common variance
ans

# The fitted Q-L regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("QL-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.8,2.5,"c1","Q","L","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("QL-c1-diff model: Estimate (in magenta) vs. true model")

# Fit with vrcp with specification of Exp-L segments and "c1" options with 
# and without common variance restriction

ans <- vrcp(z,1.5,2.5,"c1","Exp","L","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpL-c1-com fit to QL-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"c1","Exp","L","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpL-c1-diff fit to QL-c1-com model: Estimate (in magenta) vs. true model")

# Fit with vrcp with specification of Exp-L segments and "c0" options with 
# and without common variance restriction

ans <- vrcp(z,1.5,2.5,"c0","Exp","L","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpL-c0-com fit to QL-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"c0","Exp","L","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpL-c0-com fit to QL-c1-com model: Estimate (in magenta) vs. true model")

# Fit with vrcp with specification of Exp-L segments and "u" options with 
# and without common variance restriction

ans <- vrcp(z,1.5,2.5,"u","Exp","L","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpL-u-com fit to QL-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"u","Exp","L","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpL-u-com fit to QL-c1-com model: Estimate (in magenta) vs. true model")

# Exp-L fits surprisingly well in this case.


# Example 5: Exp-Exp with "c0" change point and common variance. - No option of smoothness
# Simulate the data
x1<-seq(0,2,by=0.05)
x2<-seq(2.05,5,by=0.05)

# The true regression functions
yt1 <- 0.916+2*exp(x1)
yt2 <- 12+0.5*exp(x2)

# Add noises
y1<-yt1+rnorm(length(x1),0,5)
y2<-yt2+rnorm(length(x2),0,5)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Exp-Exp regression with a change point between 1.5 and 2.5
# Fit with vrcp with specification of Exp-Exp segments and "c0" options with 
# and without common variance restriction

ans <- vrcp(z,1.5,2.5,"c0","Exp","Exp","Common") # Common variance ## simulation of smooth
ans

# The fitted Exp-Exp regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpExp-c0-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"c0","Exp","Exp","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpExp-c0-diff model: Estimate (in magenta) vs. true model")

# Fit with vrcp with specification of Exp-Exp segments and "u" options with 
# and without common variance restriction

ans <- vrcp(z,1.5,2.2,"u","Exp","Exp","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpExp-u-com fit to ExpExp-c0-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"u","Exp","Exp","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("ExpExp-u-diff fit to ExpExp-c0-com model: Estimate (in magenta) vs. true model")

# Unconstraint fits okay, considering information of continuity was not used.


# Example 6: Log-Log with "c0" change point and common variance. - No option of smoothness
# Simulate the data
x1<-seq(2,4,by=0.05)
x2<-seq(4.05,7,by=0.05)

# The true regression functions
yt1 <- 2 - 2*log(x1)
yt2 <- 13.1 - 10*log(x2)

# Add noises
y1<- yt1+rnorm(length(x1),0,0.5)
y2<- yt2+rnorm(length(x2),0,0.5)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Log-Log regression with a change point between 3.5 and 4.5
# Fit with vrcp with specification of Log-Log segments and "c0" options with 
# and without common variance restriction

ans <- vrcp(z,3.5,4.5,"c0","Log","Log","Common") # Common variance
ans

# The fitted Log-Log regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogLog-c0-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,3.5,4.5,"c0","Log","Log","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogLog-c0-diff model: Estimate (in magenta) vs. true model")

# Fit with vrcp with specification of Log-Log segments and "u" options with 
# and without common variance restriction

ans <- vrcp(z,3.7,4.5,"u","Log","Log","Common") # Common variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogLog-u-com fit to LogLog-c0-com model: Estimate (in magenta) vs. true model")


ans <- vrcp(z,3.7,4.5,"u","Log","Log","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LogLog-u-diff fit to LogLog-c0-com model: Estimate (in magenta) vs. true model")


# Example 7: Q-Exp with "c1" change point and common variance. 
# Simulate the data
x1<-seq(0,2,by=0.05)
x2<-seq(2,5,by=0.05)

# The true regression functions
yt1 <-  .2+.2*x1+.5*x1^2
yt2 <- .3832+.3*exp(x2)

# Add noises
y1<- yt1+rnorm(length(x1),0,3)
y2<- yt2+rnorm(length(x2),0,3)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Q-Exp regression with a change point between 1.5 and 2.2
# Fit with vrcp with specification of Q-Exp segments and "c1" options with 
# and without common variance restriction

ans <- vrcp(z,1.5,2.2,"c1","Q","Exp","Common") # Common variance
ans

# The fitted Q-Exp regression is superimposed on the data
# Let's compare it with the true regression 
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("QExp-c0-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.2,"c1","Q","Exp","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("QExp-c0-diff model: Estimate (in magenta) vs. true model")


# Example 8: Q-Log with "c1" change point and common variance.
# Simulate the data
x1<-seq(0.05,2.05,by=0.05)
x2<-seq(2.1,5.05,by=0.05)

# The true regression functions
yt1 <- 2+1*x1+5*x1^2
yt2 <- 0+35*log(x2)

# Add noises
y1<-yt1+rnorm(length(x1),0,4)
y2<-yt2+rnorm(length(x2),0,4)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Q-Log regression with a change point between 1.5 and 2.5
# Fit with vrcp with specification of Q-Log segments and "c1" options with 
# and without common variance restriction
ans <- vrcp(z,1.5,2.5,"c1","Q","Log","Common") # Common variance
ans

# The fitted Q-Log regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("QLog-c1-com model: Estimate (in magenta) vs. true model")

ans <- vrcp(z,1.5,2.5,"c1","Q","Log","Diff") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("QLog-c1-diff model: Estimate (in magenta) vs. true model")


# Example 9: Q-Q with "c1" change point and common variance.
# Simulate the data
x1<-seq(0.05,2,by=0.05)
x2<-seq(2.05,5,by=0.05)

# The true regression functions
yt1 <- 2+10*x1-5*x1^2
yt2 <- 30-21*x2+3.5*x2^2

# Add noises
y1<-yt1+rnorm(length(x1),0,2)
y2<-yt2+rnorm(length(x2),0,2)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a Q-Q regression with a change point between 1.5 and 2.5
# Fit with vrcp with specification of Q-Q segments and "c1" options with 
# and without common variance restriction
ans <- vrcp(z,1.5,2.5,"c1","Q","Q","Common",spline="TRUE") # Common variance
ans

# The fitted Q-Q regression and spline are superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt), color = "blue", size=1) +
ggtitle("QQ-c1-com model: Estimates vs. true model (in blue)")

ans <- vrcp(z,1.5,2.5,"c1","Q","Q","Diff",spline="TRUE") # Different variance
ans
ans$plot + ggplot2::geom_line(aes(x = x, y = yt), color = "blue", size=1) +
ggtitle("QQ-c1-diff model: Estimates vs. true model (in blue)")

# vrcp fits better than splines fitting.


# Example 10: L-NLExp with "c1" change point and common variance.
# Simulate the data
x1<- seq(0,2,by=0.05)
x2<- seq(2.05,5,by=0.05)

# The true regression functions
yt1 <- 10-0.8*x1
yt2 <- 8.4 - (-0.78/0.5) + (-0.78/0.5)*(exp(0.5*(x2-2)))

# Add noises
y1<- yt1+rnorm(length(x1),0,0.5)
y2 <- yt2+rnorm(length(x2),0,0.5)
z<-data.frame(c(x1,x2),c(y1,y2))
names(z)=c("x","y")

# z is the simulated data in data frame. Let's visualize it
plot(z)

# It looks like a L-NLExp regression with a change point between 1.8 and 2.05
# Fit with smooth L-NLExp, common or different variances

tryCatch(vrcp(z,1.8,2.05,"c1","L","NLExp","Common",start="FALSE"), error=function(e)
{return("Try different starting values. If this still fails, try a different nonlinear model 
that might be more suitable to data.")})

ans <- vrcp(z,1.8,2.05,"c1","L","NLExp","Common",start="FALSE")
ans

# The fitted L-NLExp regression is superimposed on the data
# Let's compare it with the true regression
x<-z$x
yt<-c(yt1,yt2)
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) +
scale_colour_grey(name = "Model") +
ggtitle("LNLExp-c1-com model: Estimate (in magenta) vs. true model")

tryCatch(vrcp(z,1.8,2.05,"c1","L","NLExp","Diff",start="FALSE"), error=function(e){
return("Try different starting values. If this still fails, try a different nonlinear model 
that might be more suitable to data.")})
ans <- vrcp(z,1.8,2.05,"c1","L","NLExp","Diff",start="FALSE")
ans$plot + ggplot2::geom_line(aes(x = x, y = yt, colour = c("true")), size=1) + 
scale_colour_grey(name = "Model") +
ggtitle("LNLExp-c1-diff model: Estimate (in magenta) vs. true model")

## End(Not run)

vrcp documentation built on May 29, 2017, 3:03 p.m.