Nothing
```{asis, echo = {{espace_pca_knit}}, eval = {{espace_pca_knit}}, include = {{espace_pca_knit}}}
Performing and plotting principal component analysis to reduce dimensionality of environmental space for r "{{spName1}}"
& r "{{spName2}}"
. PCA done for {{pcaPlotSel_rmd}}.
```r}, include = {{espace_pca_knit}}} # Determine the variables to use pcaSel_{{multAbr}} <- {{pcaSel_rmd}} # Run the pca espace_pca_{{multAbr}} <- espace_pca( sp.name1 = "{{spName1}}", sp.name2 = "{{spName2}}", occs.z1 = occs_{{spAbr1}}[,pcaSel_{{multAbr}}], occs.z2 = occs_{{spAbr2}}[,pcaSel_{{multAbr}}], bgPts.z1 = bgEnvsVals_{{spAbr1}}[,pcaSel_{{multAbr}}], bgPts.z2 = bgEnvsVals_{{spAbr2}}[,pcaSel_{{multAbr}}]) ## Generate plots # PCA Scatter Plot if ("{{pcaPlotSel_rmd}}" == "occs") { x <- espace_pca_{{multAbr}}$scores[espace_pca_{{multAbr}}$scores$bg == 'sp', ] x.f <- factor(x$sp) } else if ("{{pcaPlotSel_rmd}}" == "occsBg") { x <- espace_pca_{{multAbr}}$scores[espace_pca_{{multAbr}}$scores$sp == 'bg', ] x.f <- factor(x$bg) } ade4::s.class(x, x.f, xax = {{pc1_rmd}}, yax = {{pc2_rmd}}, col = c("red", "blue"), cstar = 0, cpoint = 0.1) title(xlab = paste0("PC", {{pc1_rmd}}), ylab = paste0("PC", {{pc2_rmd}})) # PCA Correlation circle ade4::s.corcircle(espace_pca_{{multAbr}}$co, xax = {{pc1_rmd}}, yax = {{pc2_rmd}}, lab = pcaSel_{{multAbr}}, full = FALSE, box = TRUE) title(xlab = paste0("PC", {{pc1_rmd}}), ylab = paste0("PC", {{pc2_rmd}})) # PCA screeplot screeplot(espace_pca_{{multAbr}}, main = NULL) # Print PCA summary of results summary(espace_pca_{{multAbr}})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.