```{asis, echo = {{vis_mapPreds_knit & vis_map_bioclim_knit & !vis_map_threshold_knit}}, eval = {{vis_mapPreds_knit & vis_map_bioclim_knit & !vis_map_threshold_knit}}, include = {{vis_mapPreds_knit & vis_map_bioclim_knit & !vis_map_threshold_knit}}}

Visualize

Generate a map of the Bioclim generated model with no threshold

```r}, include = {{vis_mapPreds_knit & vis_map_bioclim_knit  & !vis_map_threshold_knit}}}
# Select current model and obtain raster prediction

m_{{spAbr}} <- model_{{spAbr}}@models[["{{curModel_rmd}}"]]
predSel_{{spAbr}} <- dismo::predict(m_{{spAbr}}, bgMask_{{spAbr}}, useC = FALSE)
#Get values of prediction
mapPredVals_{{spAbr}} <- getRasterVals(predSel_{{spAbr}}, "{{predType_rmd}}")
#Define colors and legend  
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
legendPal <- colorNumeric(rev(rasCols), mapPredVals_{{spAbr}}, na.color = 'transparent')
rasPal <- colorNumeric(rasCols, mapPredVals_{{spAbr}}, na.color = 'transparent')
#Generate map
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m  %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Training)",
            values = mapPredVals_{{spAbr}}, layerId = "train",
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>% 
  #add occurrence data
  addCircleMarkers(data = occs_{{spAbr}}, lat = ~latitude, lng = ~longitude,
                   radius = 5, color = 'red', fill = TRUE, fillColor = "red",
                   fillOpacity = 0.2, weight = 2, popup = ~pop) %>% 
  ##Add model prediction
  addRasterImage(predSel_{{spAbr}}, colors = rasPal, opacity = 0.7,
                 group = 'vis', layerId = 'mapPred', method = "ngb") %>%
 ##add background polygons
  addPolygons(data = bgExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'proj')

```{asis, echo = {{vis_mapPreds_knit & vis_map_bioclim_knit & vis_map_threshold_knit}}, eval = {{vis_mapPreds_knit & vis_map_bioclim_knit & vis_map_threshold_knit}}, include = {{vis_mapPreds_knit & vis_map_bioclim_knit & vis_map_threshold_knit}}}

Visualize

Generate a map of the Bioclim generated model with a "{{thresholdRule_rmd}}" threshold rule of {{threshold_rmd}}.

```r}, include = {{vis_mapPreds_knit & vis_map_bioclim_knit  & vis_map_threshold_knit}}}
# Select current model and obtain raster prediction
m_{{spAbr}} <- model_{{spAbr}}@models[["{{curModel_rmd}}"]]
predSel_{{spAbr}} <- dismo::predict(m_{{spAbr}}, bgMask_{{spAbr}}, useC = FALSE)
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
thresProb_{{spAbr}} <- switch("{{thresholdRule_rmd}}", 
                              "mtp" = 0, "p10" = 0.1, "qtp" = {{probQuantile_rmd}})
# Define threshold value
thres_{{spAbr}} <- stats::quantile(occPredVals_{{spAbr}}, 
                                   probs = thresProb_{{spAbr}})
# Applied selected threshold
predSel_{{spAbr}} <- predSel_{{spAbr}} > thres_{{spAbr}}
# Get values of prediction
mapPredVals_{{spAbr}} <- getRasterVals(predSel_{{spAbr}}, "{{predType_rmd}}")
# Define colors and legend  
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
legendPal <- colorNumeric(rev(rasCols), mapPredVals_{{spAbr}}, na.color = 'transparent')
rasPal <- c('gray', 'blue')
# Generate map
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m  %>%
 leaflet::addLegend("bottomright", colors = c('gray', 'blue'),
                title = "Thresholded Suitability<br>(Training)",
                labels = c("predicted absence", "predicted presence"),
                opacity = 1, layerId = "train") %>% 
  # add occurrence data
  addCircleMarkers(data = occs_{{spAbr}}, lat = ~latitude, lng = ~longitude,
                   radius = 5, color = 'red', fill = TRUE, fillColor = "red",
                   fillOpacity = 0.2, weight = 2, popup = ~pop) %>% 
  ## Add model prediction
  addRasterImage(predSel_{{spAbr}}, colors = rasPal, opacity = 0.7,
                 group = 'vis', layerId = 'mapPred', method = "ngb") %>%
 ##add background polygons
  addPolygons(data = bgExt_{{spAbr}},fill = FALSE,
              weight = 4, color = "blue", group = 'proj')

```{asis, echo = {{vis_mapPreds_knit & vis_map_maxent_knit & !vis_map_threshold_knit}}, eval = {{vis_mapPreds_knit & vis_map_maxent_knit & !vis_map_threshold_knit}}, include = {{vis_mapPreds_knit & vis_map_maxent_knit & !vis_map_threshold_knit}}}

Visualize

Generate a map of the Maxent generated model with no threshold

```r}, include = {{vis_mapPreds_knit & vis_map_maxent_knit & !vis_map_threshold_knit}}}
# Select current model and obtain raster prediction
m_{{spAbr}} <- model_{{spAbr}}@models[["{{curModel_rmd}}"]]
predSel_{{spAbr}} <- dismo::predict(
  m_{{spAbr}}, bgMask_{{spAbr}},
  args = c(paste0("outputformat=", "{{predType_rmd}}"), 
           paste0("doclamp=", tolower(as.character({{clamp_rmd}})))), 
  na.rm = TRUE)
#Get values of prediction
mapPredVals_{{spAbr}} <- getRasterVals(predSel_{{spAbr}}, "{{predType_rmd}}")
#Define colors and legend  
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
legendPal <- colorNumeric(rev(rasCols), mapPredVals_{{spAbr}}, na.color = 'transparent')
rasPal <- colorNumeric(rasCols, mapPredVals_{{spAbr}}, na.color = 'transparent')
#Generate map
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m  %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Training)",
            values = mapPredVals_{{spAbr}}, layerId = "train",
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>% 
  #add occurrence data
  addCircleMarkers(data = occs_{{spAbr}}, lat = ~latitude, lng = ~longitude,
                   radius = 5, color = 'red', fill = TRUE, fillColor = "red",
                   fillOpacity = 0.2, weight = 2, popup = ~pop) %>% 
  ##Add model prediction
  addRasterImage(predSel_{{spAbr}}, colors = rasPal, opacity = 0.7,
                 group = 'vis', layerId = 'mapPred', method = "ngb") %>%
 ##add background polygons
  addPolygons(data = bgExt_{{spAbr}},fill = FALSE,
              weight = 4, color = "blue", group = 'proj')

```{asis, echo = {{vis_mapPreds_knit & vis_map_maxent_knit & vis_map_threshold_knit}}, eval = {{vis_mapPreds_knit & vis_map_maxent_knit & vis_map_threshold_knit}}, include = {{vis_mapPreds_knit & vis_map_maxent_knit & vis_map_threshold_knit}}}

Visualize

Generate a map of the Maxent generated model with a "{{thresholdRule_rmd}}" threshold rule of {{threshold_rmd}}.

```r}, include = {{vis_mapPreds_knit & vis_map_maxent_knit & vis_map_threshold_knit}}}
# Select current model and obtain raster prediction
m_{{spAbr}} <- model_{{spAbr}}@models[["{{curModel_rmd}}"]]
predSel_{{spAbr}} <- dismo::predict(
  m_{{spAbr}}, bgMask_{{spAbr}},
  args = c(paste0("outputformat=", "{{predType_rmd}}"), 
           paste0("doclamp=", tolower(as.character({{clamp_rmd}})))), 
  na.rm = TRUE)
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
thresProb_{{spAbr}} <- switch("{{thresholdRule_rmd}}", 
                              "mtp" = 0, "p10" = 0.1, "qtp" = {{probQuantile_rmd}})
# Define threshold value
thres_{{spAbr}} <- stats::quantile(occPredVals_{{spAbr}}, probs = thresProb_{{spAbr}})
# Applied selected threshold
predSel_{{spAbr}} <- predSel_{{spAbr}} > thres_{{spAbr}}
#Get values of prediction
mapPredVals_{{spAbr}} <- getRasterVals(predSel_{{spAbr}}, "{{predType_rmd}}")
#Define colors and legend  
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
legendPal <- colorNumeric(rev(rasCols), mapPredVals_{{spAbr}}, na.color = 'transparent')
rasPal <- c('gray', 'blue')
# Generate map  
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m  %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'blue'),
            title = "Thresholded Suitability<br>(Training)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = "train") %>% 
  #add occurrence data
  addCircleMarkers(data = occs_{{spAbr}}, lat = ~latitude, lng = ~longitude,
                   radius = 5, color = 'red', fill = TRUE, fillColor = "red",
                   fillOpacity = 0.2, weight = 2, popup = ~pop) %>% 
  ##Add model prediction
  addRasterImage(predSel_{{spAbr}}, colors = rasPal, opacity = 0.7,
                 group = 'vis', layerId = 'mapPred', method = "ngb") %>%
 ##add background polygons
  addPolygons(data = bgExt_{{spAbr}},fill = FALSE,
              weight = 4, color = "blue", group = 'proj')

```{asis, echo = {{vis_mapPreds_knit & vis_map_maxnet_knit & !vis_map_threshold_knit}}, eval = {{vis_mapPreds_knit & vis_map_maxnet_knit & !vis_map_threshold_knit}}, include = {{vis_mapPreds_knit & vis_map_maxnet_knit & !vis_map_threshold_knit}}}

Visualize

Generate a map of the maxnet generated model with no threshold

```r}, include = {{vis_mapPreds_knit & vis_map_maxnet_knit & !vis_map_threshold_knit}}}
# Select current model and obtain raster prediction
m_{{spAbr}} <- model_{{spAbr}}@models[["{{curModel_rmd}}"]]
predSel_{{spAbr}} <- predictMaxnet(m_{{spAbr}}, bgMask_{{spAbr}},
                                          type = "{{predType_rmd}}", 
                                          clamp = {{clamp_rmd}})
#Get values of prediction
mapPredVals_{{spAbr}} <- getRasterVals(predSel_{{spAbr}}, "{{predType_rmd}}")
#Define colors and legend  
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
legendPal <- colorNumeric(rev(rasCols), mapPredVals_{{spAbr}}, na.color = 'transparent')
rasPal <- colorNumeric(rasCols, mapPredVals_{{spAbr}}, na.color = 'transparent')
#Generate map
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m  %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Training)",
            values = mapPredVals_{{spAbr}}, layerId = "train",
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>% 
  #add occurrence data
  addCircleMarkers(data = occs_{{spAbr}}, lat = ~latitude, lng = ~longitude,
                   radius = 5, color = 'red', fill = TRUE, fillColor = "red",
                   fillOpacity = 0.2, weight = 2, popup = ~pop) %>% 
  ##Add model prediction
  addRasterImage(predSel_{{spAbr}}, colors = rasPal, opacity = 0.7,
                 group = 'vis', layerId = 'mapPred', method = "ngb") %>%
 ##add background polygons
  addPolygons(data = bgExt_{{spAbr}},fill = FALSE,
              weight = 4, color = "blue", group = 'proj')

```{asis, echo = {{vis_mapPreds_knit & vis_map_maxnet_knit & vis_map_threshold_knit}}, eval = {{vis_mapPreds_knit & vis_map_maxnet_knit & vis_map_threshold_knit}}, include = {{vis_mapPreds_knit & vis_map_maxnet_knit & vis_map_threshold_knit}}}

Visualize

Generate a map of the maxnet generated model with with a "{{thresholdRule_rmd}}" threshold rule of {{threshold_rmd}}.

```r}, include = {{vis_mapPreds_knit & vis_map_maxnet_knit & vis_map_threshold_knit}}}
# Select current model and obtain raster prediction
m_{{spAbr}} <- model_{{spAbr}}@models[["{{curModel_rmd}}"]] 
predSel_{{spAbr}} <- predictMaxnet(m_{{spAbr}}, bgMask_{{spAbr}},
                                          type = "{{predType_rmd}}", 
                                          clamp = {{clamp_rmd}})
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
thresProb_{{spAbr}} <- switch("{{thresholdRule_rmd}}", 
                              "mtp" = 0, "p10" = 0.1, "qtp" = {{probQuantile_rmd}})
# Define threshold value
thres_{{spAbr}} <- stats::quantile(occPredVals_{{spAbr}}, probs = thresProb_{{spAbr}})
# Applied selected threshold
predSel_{{spAbr}} <- predSel_{{spAbr}} > thres_{{spAbr}}

# Get values of prediction
mapPredVals_{{spAbr}} <- getRasterVals(predSel_{{spAbr}}, "{{predType_rmd}}")
# Define colors and legend  
rasCols <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
legendPal <- colorNumeric(rev(rasCols), mapPredVals_{{spAbr}}, na.color = 'transparent')
rasPal <- c('gray', 'blue')
# Generate map
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m  %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'blue'),
            title = "Thresholded Suitability<br>(Training)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = "train") %>% 
  #add occurrence data
  addCircleMarkers(data = occs_{{spAbr}}, lat = ~latitude, lng = ~longitude,
                   radius = 5, color = 'red', fill = TRUE, fillColor = "red",
                   fillOpacity = 0.2, weight = 2, popup = ~pop) %>% 
  ##Add model prediction
  addRasterImage(predSel_{{spAbr}}, colors = rasPal, opacity = 0.7,
                 group = 'vis', layerId = 'mapPred', method = "ngb") %>%
 ##add background polygons
  addPolygons(data = bgExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'proj')


Try the wallace package in your browser

Any scripts or data that you put into this service are public.

wallace documentation built on Sept. 11, 2024, 9:16 p.m.