```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to the same modelling area with no threshold rule. New time based on {{envs_name_rmd}} variables for {{yearMin_rmd}} using a {{model_rmd}} GCM and an SSP of {{rcp_rmd}}.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}}
#Download variables for transferring 
xferTimeEnvs_{{spAbr}} <- geodata::cmip6_world(
  model = "{{model_rmd}}",
  ssp = "{{rcp_rmd}}",
  time = "{{year_rmd}}",
  var = "bio",
  res = round((raster::res(bgMask_{{spAbr}}) * 60)[1],1),
  path = tempdir())

names(xferTimeEnvs_{{spAbr}}) <- paste0('bio', c(paste0('0',1:9), 10:19))
# Select variables for transferring to match variables used for modelling 
xferTimeEnvs_{{spAbr}} <- xferTimeEnvs_{{spAbr}}[[names(bgMask_{{spAbr}})]]
# Convert to rasterstack
xferTimeEnvs_{{spAbr}} <- raster::stack(xferTimeEnvs_{{spAbr}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = bgExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 
# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt


###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}}$xferTime,"{{outputType_rmd}}")
rasCols_{{spAbr}} <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols_{{spAbr}}), mapXferVals_{{spAbr}}, na.color = 'transparent')
rasPal_{{spAbr}} <- colorNumeric(rasCols_{{spAbr}}, mapXferVals_{{spAbr}}, na.color = 'transparent')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Transferred)",
            values = mapXferVals_{{spAbr}}, layerId = 'xfer',
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>%
# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}$xferTime, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (same modeling area)
  addPolygons(data = bgExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to the same modelling area with a "{{xfer_thresholdRule_rmd}}" threshold rule of {{xfer_threshold_rmd}}. New time based on {{envs_name_rmd}} variables for {{yearMin_rmd}} using a {{model_rmd}} GCM and an SSP of {{rcp_rmd}}.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit &  xfer_time_threshold_knit & xfer_time_worldclim_knit}}}
#Download variables for transferring 
xferTimeEnvs_{{spAbr}} <- geodata::cmip6_world(
  model = "{{model_rmd}}",
  ssp = "{{rcp_rmd}}",
  time = "{{year_rmd}}",
  var = "bio",
  res = round((raster::res(bgMask_{{spAbr}}) * 60)[1],1),
  path = tempdir())

names(xferTimeEnvs_{{spAbr}}) <- paste0('bio', c(paste0('0',1:9), 10:19))
# Select variables for transferring to match variables used for modelling 
xferTimeEnvs_{{spAbr}} <- xferTimeEnvs_{{spAbr}}[[names(bgMask_{{spAbr}})]]
# Convert to rasterstack
xferTimeEnvs_{{spAbr}} <- raster::stack(xferTimeEnvs_{{spAbr}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = bgExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 

# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
xfer_thresProb_{{spAbr}} <- switch("{{xfer_thresholdRule_rmd}}", 
                                   "mtp" = 0, "p10" = 0.1, "qtp" = {{xfer_probQuantile_rmd}})
# Add threshold if specified 
xfer_time_{{spAbr}} <- xfer_time_{{spAbr}}$xferTime > xfer_thresProb_{{spAbr}}

##Make map
###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}},"{{outputType_rmd}}")

  # if threshold specified
rasPal_{{spAbr}} <- c('gray', 'red')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'red'),
            title = "Thresholded Suitability<br>(Transferred)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = 'xfer')%>%

# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (same modeling area)
  addPolygons(data = bgExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user drawn area with no threshold. New time based on {{envs_name_rmd}} variables for {{yearMin_rmd}} using a {{model_rmd}} GCM and an SSP of {{rcp_rmd}}.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit &  !xfer_time_threshold_knit & xfer_time_worldclim_knit}}}
#Download variables for transferring 
xferTimeEnvs_{{spAbr}} <- geodata::cmip6_world(
  model = "{{model_rmd}}",
  ssp = "{{rcp_rmd}}",
  time = "{{year_rmd}}",
  var = "bio",
  res = round((raster::res(bgMask_{{spAbr}}) * 60)[1],1),
  path = tempdir())

names(xferTimeEnvs_{{spAbr}}) <- paste0('bio', c(paste0('0',1:9), 10:19))
# Select variables for transferring to match variables used for modelling 
xferTimeEnvs_{{spAbr}} <- xferTimeEnvs_{{spAbr}}[[names(bgMask_{{spAbr}})]]
# Convert to rasterstack
xferTimeEnvs_{{spAbr}} <- raster::stack(xferTimeEnvs_{{spAbr}})

# Generate the area of transfer according to the drawn polygon in the GUI
xfer_draw_{{spAbr}} <-xfer_draw(
  polyXfXY = matrix({{polyXfXY_rmd}}, ncol = 2, byrow = FALSE),
  polyXfID = {{polyXfID_rmd}},
  drawXfBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_draw_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
 ) 
#store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt

###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}}$xferTime,"{{outputType_rmd}}")
rasCols_{{spAbr}} <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols_{{spAbr}}), mapXferVals_{{spAbr}}, na.color = 'transparent')
rasPal_{{spAbr}} <- colorNumeric(rasCols_{{spAbr}}, mapXferVals_{{spAbr}}, na.color = 'transparent')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Transferred)",
            values = mapXferVals_{{spAbr}}, layerId = 'xfer',
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>%
# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}$xferTime, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user drawn area)
  addPolygons(data = xfer_draw_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user drawn area with a "{{xfer_thresholdRule_rmd}}" threshold rule of {{xfer_threshold_rmd}}. New time based on {{envs_name_rmd}} variables for {{yearMin_rmd}} using a {{model_rmd}} GCM and an SSP of {{rcp_rmd}}.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit &  xfer_time_threshold_knit & xfer_time_worldclim_knit}}}
#Download variables for transferring 
xferTimeEnvs_{{spAbr}} <- geodata::cmip6_world(
  model = "{{model_rmd}}",
  ssp = "{{rcp_rmd}}", 
  time = "{{year_rmd}}", 
  var = "bio", 
  res = round((raster::res(bgMask_{{spAbr}}) * 60)[1],1), 
  path = tempdir())

names(xferTimeEnvs_{{spAbr}}) <- paste0('bio', c(paste0('0',1:9), 10:19))
# Select variables for transferring to match variables used for modelling 
xferTimeEnvs_{{spAbr}} <- xferTimeEnvs_{{spAbr}}[[names(bgMask_{{spAbr}})]]
# Convert to rasterstack
xferTimeEnvs_{{spAbr}} <- raster::stack(xferTimeEnvs_{{spAbr}})

# Generate the area of transfer according to the drawn polygon in the GUI
xfer_draw_{{spAbr}} <-xfer_draw(
  polyXfXY = matrix({{polyXfXY_rmd}},ncol=2,byrow=FALSE),
  polyXfID = {{polyXfID_rmd}},
  drawXfBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_draw_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
 )

# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
xfer_thresProb_{{spAbr}} <- switch("{{xfer_thresholdRule_rmd}}", 
                                   "mtp" = 0, "p10" = 0.1, "qtp" = {{xfer_probQuantile_rmd}})
# Add threshold if specified 
xfer_time_{{spAbr}} <- xfer_time_{{spAbr}}$xferTime > xfer_thresProb_{{spAbr}}

##Make map
###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}},"{{outputType_rmd}}")

  # if threshold specified
rasPal_{{spAbr}} <- c('gray', 'red')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'red'),
            title = "Thresholded Suitability<br>(Transferred)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = 'xfer') %>%
# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user drawn area)
  addPolygons(data = xfer_draw_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user provided area area with no threshold. New time based on {{envs_name_rmd}} variables for {{yearMin_rmd}} using a {{model_rmd}} GCM and an SSP of {{rcp_rmd}}.

```r}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit &  !xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

# Download variables for transferring 
xferTimeEnvs_{{spAbr}} <- geodata::cmip6_world(
  model = "{{model_rmd}}",
  ssp = "{{rcp_rmd}}", 
  time = "{{year_rmd}}", 
  var = "bio", 
  res = round((raster::res(bgMask_{{spAbr}}) * 60)[1],1), 
  path = tempdir())

names(xferTimeEnvs_{{spAbr}}) <- paste0('bio', c(paste0('0',1:9), 10:19))
# Select variables for transferring to match variables used for modelling 
xferTimeEnvs_{{spAbr}} <- xferTimeEnvs_{{spAbr}}[[names(bgMask_{{spAbr}})]]
# Convert to rasterstack
xferTimeEnvs_{{spAbr}} <- raster::stack(xferTimeEnvs_{{spAbr}})

# Generate the area of transfer based on user provided files
  ##User must input the path to shapefile or csv file and the file name 
xfer_userExt_{{spAbr}} <- xfer_userExtent(
  bgShp_path = "Input path here",
  bgShp_name = "Input file name here",
  userBgBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_userExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 
# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt

###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}}$xferTime,"{{outputType_rmd}}")
rasCols_{{spAbr}} <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols_{{spAbr}}), mapXferVals_{{spAbr}}, 
                          na.color = 'transparent')
rasPal_{{spAbr}} <- colorNumeric(rasCols_{{spAbr}}, mapXferVals_{{spAbr}}, 
                                 na.color = 'transparent')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Transferred)",
            values = mapXferVals_{{spAbr}}, layerId = 'xfer',
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>%
# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}$xferTime, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user provided area)
  addPolygons(data = xfer_userExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user provided area with a "{{xfer_thresholdRule_rmd}}" threshold rule of {{xfer_threshold_rmd}}. New time based on {{envs_name_rmd}} variables for {{yearMin_rmd}} using a {{model_rmd}} GCM and an SSP of {{rcp_rmd}}.

```r}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit &  xfer_time_threshold_knit & xfer_time_worldclim_knit}}}

# Download variables for transferring from Worldclim
xferTimeEnvs_{{spAbr}} <- geodata::cmip6_world(
  model = "{{model_rmd}}", 
  ssp  = "{{rcp_rmd}}", 
  time = "{{year_rmd}}", 
  var = "bio", 
  res = round((raster::res(bgMask_{{spAbr}}) * 60)[1],1), 
  path = tempdir())

names(xferTimeEnvs_{{spAbr}}) <- paste0('bio', c(paste0('0',1:9), 10:19))
# Select variables for transferring to match variables used for modelling 
xferTimeEnvs_{{spAbr}} <- xferTimeEnvs_{{spAbr}}[[names(bgMask_{{spAbr}})]]
# Convert to rasterstack
xferTimeEnvs_{{spAbr}} <- raster::stack(xferTimeEnvs_{{spAbr}})

# Generate the area of transfer based on user provided files
  ##User must input the path to shapefile or csv file and the file name 
xfer_userExt_{{spAbr}} <- xfer_userExtent(
  bgShp_path = "Input path here",
  bgShp_name = "Input file name here",
  userBgBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_userExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 
# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
xfer_thresProb_{{spAbr}} <- switch("{{xfer_thresholdRule_rmd}}", 
                                   "mtp" = 0, "p10" = 0.1, "qtp" = {{xfer_probQuantile_rmd}})
# Add threshold if specified 
xfer_time_{{spAbr}} <- xfer_time_{{spAbr}}$xferTime > xfer_thresProb_{{spAbr}}

##Make map
###Make map of transfer
bb_{{spAbr}} <- bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}},"{{outputType_rmd}}")

  # if threshold specified
rasPal_{{spAbr}} <- c('gray', 'red')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'red'),
           title = "Thresholded Suitability<br>(Transferred)",
           labels = c("predicted absence", "predicted presence"),
           opacity = 1, layerId = 'xfer')%>%

# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user provided area)
  addPolygons(data = xfer_userExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to the same modelling area with no threshold rule. New time based on "{{envs_name_rmd}}" variables for {{yearMin_rmd}} to {{yearMax_rmd}} using a "{{xfAOGCM_rmd}}" GCM and a "{{xfScenario_rmd}}" scenario.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}
#Download data from ecoClimate for transferring
xferTimeEnvs_{{spAbr}} <- envs_ecoClimate(
  "{{xfAOGCM_rmd}}",
  "{{xfScenario_rmd}}",
  as.numeric(gsub("bio", "", names(bgMask_{{spAbr}}))))

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}} ,
  xfExt = bgExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 
#store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt

 ###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}}$xferTime,"{{outputType_rmd}}")
rasCols_{{spAbr}} <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols_{{spAbr}}), mapXferVals_{{spAbr}}, 
                          na.color = 'transparent')
rasPal_{{spAbr}} <- colorNumeric(rasCols_{{spAbr}}, mapXferVals_{{spAbr}}, 
                                 na.color = 'transparent')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Transferred)",
            values = mapXferVals_{{spAbr}}, layerId = 'xfer',
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>%
# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}$xferTime, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (same modeling area)
  addPolygons(data = bgExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to the same modelling area with a "{{xfer_thresholdRule_rmd}}" threshold rule of {{xfer_threshold_rmd}}. New time based on "{{envs_name_rmd}}" variables for {{yearMin_rmd}} to {{yearMax_rmd}} using a "{{xfAOGCM_rmd}}" GCM and a "{{xfScenario_rmd}}" scenario.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & !xfer_time_drawn_knit &  xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}
#Download data from ecoClimate for transferring
xferTimeEnvs_{{spAbr}} <- envs_ecoClimate(
  "{{xfAOGCM_rmd}}",
  "{{xfScenario_rmd}}",
  as.numeric(gsub("bio", "", names(bgMask_{{spAbr}}))))

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}} ,
  xfExt = bgExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 
# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
xfer_thresProb_{{spAbr}} <- switch("{{xfer_thresholdRule_rmd}}", 
                                   "mtp" = 0, "p10" = 0.1, "qtp" = {{xfer_probQuantile_rmd}})
# Add threshold if specified 
xfer_time_{{spAbr}} <- xfer_time_{{spAbr}}$xferTime > xfer_thresProb_{{spAbr}}

##Make map
###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}},"{{outputType_rmd}}")

# if threshold specified
rasPal_{{spAbr}} <- c('gray', 'red')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'red'),
            title = "Thresholded Suitability<br>(Transferred)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = 'xfer') %>%

# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (same modeling area)
  addPolygons(data = bgExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user drawn area with no threshold rule. New time based on "{{envs_name_rmd}}" variables for {{yearMin_rmd}} to {{yearMax_rmd}} using a "{{xfAOGCM_rmd}}" GCM and a "{{xfScenario_rmd}}" scenario.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit &  !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}
#Download data from ecoClimate for transferring
xferTimeEnvs_{{spAbr}} <- envs_ecoClimate(
  "{{xfAOGCM_rmd}}",
  "{{xfScenario_rmd}}",
  as.numeric(gsub("bio", "", names(bgMask_{{spAbr}}))))

# Generate the area of transfer according to the drawn polygon in the GUI
xfer_draw_{{spAbr}} <-xfer_draw(
  polyXfXY = matrix({{polyXfXY_rmd}},ncol=2,byrow=FALSE),
  polyXfID = {{polyXfID_rmd}},
  drawXfBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_draw_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
  ) 
# Store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt

###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}}$xferTime,"{{outputType_rmd}}")
rasCols_{{spAbr}} <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols_{{spAbr}}), mapXferVals_{{spAbr}}, na.color = 'transparent')
rasPal_{{spAbr}} <- colorNumeric(rasCols_{{spAbr}}, mapXferVals_{{spAbr}}, na.color = 'transparent')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Transferred)",
            values = mapXferVals_{{spAbr}}, layerId = 'xfer',
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>%

# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}$xferTime, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user drawn area)
  addPolygons(data = xfer_draw_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user drawn area with a "{{xfer_thresholdRule_rmd}}" threshold rule of {{xfer_threshold_rmd}}. New time based on "{{envs_name_rmd}}" variables for {{yearMin_rmd}} to {{yearMax_rmd}} using a "{{xfAOGCM_rmd}}" GCM and a "{{xfScenario_rmd}}" scenario.

```r}, include = {{xfer_time_knit & !xfer_time_user_knit & xfer_time_drawn_knit &  xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}
#Download data from ecoClimate for transferring
xferTimeEnvs_{{spAbr}} <- envs_ecoClimate(
  "{{xfAOGCM_rmd}}",
  "{{xfScenario_rmd}}",
  as.numeric(gsub("bio", "", names(bgMask_{{spAbr}}))))

# Generate the area of transfer according to the drawn polygon in the GUI
xfer_draw_{{spAbr}} <-xfer_draw(
  polyXfXY = matrix({{polyXfXY_rmd}},ncol=2,byrow=FALSE),
  polyXfID = {{polyXfID_rmd}},
  drawXfBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_draw_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
 ) 

# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
xfer_thresProb_{{spAbr}} <- switch("{{xfer_thresholdRule_rmd}}", 
                                   "mtp" = 0, "p10" = 0.1, "qtp" = {{xfer_probQuantile_rmd}})
# Add threshold if specified 
xfer_time_{{spAbr}} <- xfer_time_{{spAbr}}$xferTime > xfer_thresProb_{{spAbr}}

##Make map
###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}},"{{outputType_rmd}}")

  # if threshold specified
rasPal_{{spAbr}} <- c('gray', 'red')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'red'),
            title = "Thresholded Suitability<br>(Transferred)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = 'xfer')%>%

# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user drawn area)
  addPolygons(data = xfer_draw_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user provided area with no threshold rule. New time based on "{{envs_name_rmd}}" variables for {{yearMin_rmd}} to {{yearMax_rmd}} using a "{{xfAOGCM_rmd}}" GCM and a "{{xfScenario_rmd}}" scenario.

```r}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit &  !xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}
#Download data from ecoClimate for transferring
xferTimeEnvs_{{spAbr}} <- envs_ecoClimate(
  "{{xfAOGCM_rmd}}",
  "{{xfScenario_rmd}}",
  as.numeric(gsub("bio", "", names(bgMask_{{spAbr}}))))

# Generate the area of transfer based on user provided files
  ##User must input the path to shapefile or csv file and the file name 
xfer_userExt_{{spAbr}} <- xfer_userExtent(
  bgShp_path = "Input path here",
  bgShp_name = "Input file name here",
  userBgBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_userExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
) 

# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt

###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}}$xferTime,"{{outputType_rmd}}")
rasCols_{{spAbr}} <- c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c")
# if no threshold specified
legendPal <- colorNumeric(rev(rasCols_{{spAbr}}), mapXferVals_{{spAbr}}, 
                          na.color = 'transparent')
rasPal_{{spAbr}} <- colorNumeric(rasCols_{{spAbr}}, mapXferVals_{{spAbr}}, 
                                 na.color = 'transparent')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", pal = legendPal,
            title = "Predicted Suitability<br>(Transferred)",
            values = mapXferVals_{{spAbr}}, layerId = 'xfer',
            labFormat = reverseLabel(2, reverse_order = TRUE)) %>%
# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}$xferTime, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user provided area)
  addPolygons(data = xfer_userExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')

```{asis, echo = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, eval = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit & xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

Transfer model

Transferring the model to a user provided area with a "{{xfer_thresholdRule_rmd}}" threshold rule of {{xfer_threshold_rmd}}. New time based on "{{envs_name_rmd}}" variables for {{yearMin_rmd}} to {{yearMax_rmd}} using a "{{xfAOGCM_rmd}}" GCM and a "{{xfScenario_rmd}}" scenario.

```r}, include = {{xfer_time_knit & xfer_time_user_knit & !xfer_time_drawn_knit &  xfer_time_threshold_knit & !xfer_time_worldclim_knit}}}

#Download data from ecoClimate for transferring
xferTimeEnvs_{{spAbr}} <- envs_ecoClimate(
  "{{xfAOGCM_rmd}}",
  "{{xfScenario_rmd}}",
  as.numeric(gsub("bio", "", names(bgMask_{{spAbr}}))))

# Generate the area of transfer based on user provided files
  ##User must input the path to shapefile or csv file and the file name 
xfer_userExt_{{spAbr}} <- xfer_userExtent(
  bgShp_path = "Input path here",
  bgShp_name = "Input file name here",
  userBgBuf = {{BgBuf_rmd}})

# Generate a transfer of the model to the desired area and time
xfer_time_{{spAbr}} <-xfer_time(
  evalOut = model_{{spAbr}},
  curModel = "{{curModel_rmd}}",
  envs = xferTimeEnvs_{{spAbr}},
  xfExt = xfer_userExt_{{spAbr}},
  alg = "{{alg_rmd}}",
  outputType = "{{outputType_rmd}}",
  clamp = {{clamp_rmd}}
 ) 
# store the cropped variables of transfer
xferExt_{{spAbr}} <- xfer_time_{{spAbr}}$xferExt
# extract the suitability values for all occurrences
occs_xy_{{spAbr}} <- occs_{{spAbr}}[c('longitude', 'latitude')]
# determine the threshold based on the current prediction
occPredVals_{{spAbr}} <- raster::extract(predSel_{{spAbr}}, occs_xy_{{spAbr}})
# Define probability of quantile based on selected threshold
xfer_thresProb_{{spAbr}} <- switch("{{xfer_thresholdRule_rmd}}", 
                                   "mtp" = 0, "p10" = 0.1, "qtp" = {{xfer_probQuantile_rmd}})
# Add threshold if specified 
xfer_time_{{spAbr}} <- xfer_time_{{spAbr}}$xferTime > xfer_thresProb_{{spAbr}}

##Make map
###Make map of transfer
bb_{{spAbr}} <-  bgExt_{{spAbr}}@bbox
bbZoom <- polyZoom(bb_{{spAbr}}[1, 1], bb_{{spAbr}}[2, 1], bb_{{spAbr}}[1, 2], 
                   bb_{{spAbr}}[2, 2], fraction = 0.05)
mapXferVals_{{spAbr}} <- getRasterVals(xfer_time_{{spAbr}},"{{outputType_rmd}}")

  # if threshold specified
rasPal_{{spAbr}} <- c('gray', 'red')
m <- leaflet() %>% addProviderTiles(providers$Esri.WorldTopoMap) 
m %>%
  fitBounds(bbZoom[1], bbZoom[2], bbZoom[3], bbZoom[4]) %>%
  leaflet::addLegend("bottomright", colors = c('gray', 'red'),
            title = "Thresholded Suitability<br>(Transferred)",
            labels = c("predicted absence", "predicted presence"),
            opacity = 1, layerId = 'xfer')%>%

# map model prediction raster and polygon of transfer
  clearMarkers() %>% clearShapes() %>% removeImage('xferRas') %>%
  addRasterImage(xfer_time_{{spAbr}}, colors = rasPal_{{spAbr}}, opacity = 0.7,
                 layerId = 'xferRas', group = 'xfer', method = "ngb") %>%
 ##add polygon of transfer (user provided area)
  addPolygons(data = xfer_userExt_{{spAbr}}, fill = FALSE,
              weight = 4, color = "blue", group = 'xfer')


Try the wallace package in your browser

Any scripts or data that you put into this service are public.

wallace documentation built on Sept. 11, 2024, 9:16 p.m.