Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = rlang::is_installed("vip") && rlang::is_installed("ggplot2")
)
## ----setup--------------------------------------------------------------------
library(waywiser)
set.seed(1107)
worldclim_training <- sample(nrow(worldclim_simulation) * 0.8)
worldclim_testing <- worldclim_simulation[-worldclim_training, ]
worldclim_training <- worldclim_simulation[worldclim_training, ]
worldclim_model <- lm(
response ~ bio2 + bio10 + bio13 + bio19,
worldclim_training
)
worldclim_testing$predictions <- predict(
worldclim_model,
worldclim_testing
)
head(worldclim_testing)
## -----------------------------------------------------------------------------
ww_agreement_coefficient(
worldclim_testing,
truth = response,
estimate = predictions
)
ww_agreement_coefficient_vec(
truth = worldclim_testing$response,
estimate = worldclim_testing$predictions
)
## -----------------------------------------------------------------------------
ww_global_geary_c(
worldclim_testing,
truth = response,
estimate = predictions
)
## -----------------------------------------------------------------------------
ww_global_geary_c(
worldclim_testing,
truth = response,
estimate = predictions,
wt = ww_build_weights(worldclim_testing)
)
ww_global_geary_c(
worldclim_testing,
truth = response,
estimate = predictions,
wt = ww_build_weights
)
## -----------------------------------------------------------------------------
yardstick::metric_set(
ww_agreement_coefficient,
ww_global_geary_c
)(worldclim_testing,
truth = response,
estimate = predictions)
## -----------------------------------------------------------------------------
ww_multi_scale(
worldclim_testing,
truth = response,
estimate = predictions,
metrics = list(ww_agreement_coefficient, yardstick::rmse),
n = list(c(2, 4))
)
## -----------------------------------------------------------------------------
grid <- sf::st_make_grid(worldclim_testing, n = c(2, 4))
ww_multi_scale(
worldclim_testing,
truth = response,
estimate = predictions,
metrics = list(ww_agreement_coefficient, yardstick::rmse),
grids = list(grid)
)
## -----------------------------------------------------------------------------
worldclim_aoa <- ww_area_of_applicability(
response ~ bio2 + bio10 + bio13 + bio19,
worldclim_training,
importance = vip::vi_model(worldclim_model)
)
worldclim_aoa
## -----------------------------------------------------------------------------
worldclim_testing <- cbind(
worldclim_testing,
predict(worldclim_aoa, worldclim_testing)
)
head(worldclim_testing)
## -----------------------------------------------------------------------------
library(ggplot2)
ggplot(worldclim_testing, aes(di, abs(response - predictions), color = aoa)) +
geom_point(alpha = 0.6)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.