Description Usage Arguments Value Examples
The function applies the Wild Binary Segmentation algorithm to identify potential locations of the change-points in the mean of the input vector x.
The object returned by this routine can be further passed to the changepoints function,
which finds the final estimate of the change-points based on chosen stopping criteria.
1 2 3 4 5 |
x |
a numeric vector |
... |
not in use |
M |
a number of intervals used in the WBS algorithm |
rand.intervals |
a logical variable; if |
integrated |
a logical variable indicating the version of Wild Binary Segmentation algorithm used; when |
an object of class "wbs", which contains the following fields
x |
the input vector provided |
n |
the length of |
M |
the number of intervals used |
rand.intervals |
a logical variable indicating type of intervals |
integrated |
a logical variable indicating type of WBS procedure |
res |
a 6-column matrix with results, where 's' and 'e' denote start- end points of the intervals in which change-points candidates 'cpt' have been found; column 'CUSUM' contains corresponding value of CUSUM statistic; 'min.th' is the smallest threshold value for which given change-point candidate would be not added to the set of estimated change-points; the last column is the scale at which the change-point has been found |
1 2 3 4 5 6 7 8 | x <- rnorm(300) + c(rep(1,50),rep(0,250))
w <- wbs(x)
plot(w)
w.cpt <- changepoints(w)
w.cpt
th <- c(w.cpt$th,0.7*w.cpt$th)
w.cpt <- changepoints(w,th=th)
w.cpt$cpt.th
|
$sigma
[1] 0.9244268
$th
[1] 4.058938
$no.cpt.th
[1] 1
$cpt.th
$cpt.th[[1]]
[1] 71
$Kmax
[1] 50
$ic.curve
$ic.curve$ssic.penalty
[1] 6.169828 -2.076369 2.094517 4.976528 10.700755 14.634837
[7] 20.363745 23.621532 25.013413 26.527290 30.650581 35.815807
[13] 40.446056 44.285020 46.878742 52.282997 57.109050 61.505328
[19] 64.146321 67.198243 70.187398 75.353524 80.690841 85.307921
[25] 87.690551 90.117899 92.265936 95.766653 99.674123 101.651746
[31] 104.621496 109.699988 111.757696 113.659580 115.586533 120.485209
[37] 122.422209 126.974370 129.472112 132.108233 135.808735 140.949030
[43] 143.570933 146.051831 149.628495 152.393247 157.455903 162.765412
[49] 164.998799 167.332343 171.940093
$ic.curve$bic.penalty
[1] 6.169828 -2.176549 1.894158 4.675989 10.300035 14.133938
[7] 19.762666 22.920273 24.211975 25.625671 29.648783 34.713829
[13] 39.243897 42.982682 45.476224 50.780299 55.506173 59.802270
[19] 62.343084 65.294826 68.183802 73.249747 78.486885 83.003784
[25] 85.286234 87.613403 89.661260 93.061798 96.869087 98.746531
[31] 101.616101 106.594413 108.551941 110.353646 112.180418 116.978915
[37] 118.815734 123.267716 125.665278 128.201219 131.801541 136.841656
[43] 139.363379 141.744098 145.220582 147.885154 152.847630 158.056959
[49] 160.190167 162.423531 166.931101
$ic.curve$mbic.penalty
[1] 6.1698277 -0.1802396 5.9107273 9.2273709 15.7031507 21.2535265
[7] 28.5014018 32.3104645 34.8657996 36.2717442 41.6566329 47.9083560
[13] 53.8068242 58.2927933 61.4281549 67.9448240 72.6577098 78.0435699
[19] 80.5710499 83.5031814 87.3076469 93.4676798 99.5952918 104.0925810
[25] 106.3528050 109.4873884 112.0032917 115.8892187 120.3723129 122.2127023
[31] 125.0609923 130.4770393 132.4181727 134.1287160 135.9332626 141.4684120
[37] 143.2749194 148.4635535 150.8407049 153.3366251 157.7374816 163.2063217
[43] 165.9834577 168.3319074 172.2138563 175.4374437 181.0172921 186.6166999
[49] 188.5471749 190.7370338 196.0583316
$cpt.ic
$cpt.ic$ssic.penalty
[1] 71
$cpt.ic$bic.penalty
[1] 71
$cpt.ic$mbic.penalty
[1] 71
$no.cpt.ic
ssic.penalty bic.penalty mbic.penalty
1 1 1
[[1]]
[1] 71 176 6
[[2]]
[1] 71
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.