Nothing
#' Run composite analysis
#'
#' This function fits a Cox Model to time-to-event data and calculates the z statistic. In the wintime package, this function is used for the
#' EWTR-composite max test (MAX) method.
#'
#' @param n The total number of trial participants.
#' @param Time A m x n matrix of event times (days), where m is the number of events in the hierarchy. Rows should represent events and columns
#' should represent participants. Event rows should be in increasing order of clinical severity.
#' @param Delta A m x n matrix of event indicators, where m is the number of events in the hierarchy. Rows should represent events and
#' columns should represent participants. Event rows should be in increasing order of clinical severity.
#' @param cov A n x p matrix of covariate values, where p is the number of covariates. Rows should represent participants and columns
#' should represent covariate values.
#' @param trt A vector of length n containing treatment arm indicators (1 for treatment, 0 for control).
#' @return A list containing: The z-statistic of the treatment effect from the Cox Model fit, the treatment effect estimate, the variance of the treatment effect estimate, the p-value for treatment effect.
# --------------------------------
# Composite Analysis
# --------------------------------
COMP <- function(n,Time,Delta,cov,trt) {
TIME_COMP <- numeric(n)
DELTA_COMP <- numeric(n)
for (i in 1:n) {
TIME_COMP[i] <- min(Time[ ,i])
DELTA_COMP[i] <- max(Delta[ ,i])
}
if (!is.null(cov)) {
fit=survival::coxph(survival::Surv(TIME_COMP,DELTA_COMP)~trt+cov)
}
else {
fit <- survival::coxph(survival::Surv(TIME_COMP,DELTA_COMP)~trt)
}
z_COMP <- -1*coef(fit)[1]/sqrt(vcov(fit)[1,1])
est_COMP <- exp(coef(fit)[1])
var_COMP=vcov(fit)[1,1]
p_COMP <- 2*(1-pnorm(abs(z_COMP),mean=0,sd=1))
return(list(z_COMP,est_COMP,var_COMP,p_COMP))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.