Nothing
#' Resample using permutations
#'
#' This function reruns the desired wintime package method on a given number of permutations. This resampling method is recommended
#' for the Expected win time (EWT) and Restricted mean survival in favor of treatment (RMT) methods.
#'
#' @param type A string value indicating the wintime package method that will run with resampling.
#' @param rmst_restriction The RMT cutoff value (days).
#' @param model A string value indicating the model used on observed data ('markov' or 'km').
#' @param n The total number of trial participants.
#' @param m The number of events in the hierarchy.
#' @param Time A m x n matrix of event times (days). Rows should represent events and columns should represent participants. Event rows should be
#' in increasing order of clinical severity.
#' @param Delta A m x n matrix of event indicators. Rows should represent events and columns should represent participants. Event rows should
#' be in increasing order of clinical severity.
#' @param trt A numeric vector of treatment arm indicators (1 for treatment, 0 for control).
#' @param cov A n x p matrix of covariate values, where p is the number of covariates. Rows should represent participants and columns should
#' represent covariate values.
#' @param z_ewtr The Z-statistic of EWTR.
#' @param z_comp The Z-statistic of the composite event approach.
#' @param resample_num The number of desired permutations.
#' @param seed The seed used for random number generation.
#' @return A vector of length resample_num containing the treatment effect estimates (for type='max' these are z-statistics) for each permutation.
# -------------------------------
# Permutations
# -------------------------------
perm <- function(type,rmst_restriction,model,n,m,Time,Delta,trt,cov,z_ewtr,z_comp,resample_num,seed) {
# Initialize vector to hold permuted data values
y <- rep(0,times = resample_num)
time <- Time[m:1, ]
delta <- Delta[m:1, ]
iperm <- 1
while (iperm <= resample_num) {
# Generate permutations
perm_indices <- sample(1:n, size = length(trt), replace = FALSE)
trt_perm <- trt[perm_indices]
Time_perm <- Time[, perm_indices, drop = FALSE]
Delta_perm <- Delta[, perm_indices, drop = FALSE]
time_perm <- time[, perm_indices, drop = FALSE]
delta_perm <- delta[, perm_indices, drop = FALSE]
cov_perm <- cov[perm_indices,, drop = FALSE]
# Set parameters for model fitting calls
n0 <- sum(trt_perm == 0)
n1 <- sum(trt_perm == 1)
trt_perm[1:n0] <- 0
trt_perm[(n0+1):n] <- 1
m <- nrow(Time_perm)
tau <- max(Time_perm[m, ])
# Type function calls on permuted data
z <- NULL
markov_ind <- FALSE
if (!is.null(model)) {
# If a Markov model is specified, call the function to fit a Markov model
if (model == "markov") {
z <- markov(n0,n1,m,Time_perm,Delta_perm)
markov_ind <- TRUE
}
# If no model is specified, use the default (KM) model
else {
z <- km(n0,n1,m,Time_perm,Delta_perm)
}
}
if (!is.null(z)) {
# Parameters for type function calls
dist_state0_perm <- z[[1]]
dist_state1_perm <- z[[2]]
untimes0_perm <- z[[3]]
untimes1_perm <- z[[4]]
nuntimes0_perm <- z[[5]]
nuntimes1_perm <- z[[6]]
max_follow0_perm <- z[[7]]
max_follow1_perm <- z[[8]]
}
# Type function calls
type <- tolower(type)
if (type == "ewt") {
y[iperm] <- EWT(m,dist_state0_perm,dist_state1_perm,untimes0_perm,untimes1_perm,nuntimes0_perm,nuntimes1_perm)
}
else if (type == "ewtr") {
y[iperm] <- EWTR(n,m,nuntimes0_perm,max_follow0_perm,untimes0_perm,Time_perm,Delta_perm,dist_state0_perm,markov_ind,cov_perm,trt_perm)[[1]]
}
else if (type == "rmt") {
y[iperm] <- RMT(m,rmst_restriction,dist_state0_perm,dist_state1_perm,untimes0_perm,untimes1_perm,nuntimes0_perm,nuntimes1_perm)
}
else if (type == "wtr") {
y[iperm] <- WTR(n,m,tau,trt_perm,Time_perm,Delta_perm)[[1]]
}
else if (type == "rwtr") {
y[iperm] <- RWTR(n,m,tau,trt_perm,Time_perm,Delta_perm)[[1]]
}
else if (type == "pwt") {
y[iperm] <- PWT(n,n0,n1,Time_perm,Delta_perm,trt_perm,m,tau)
}
else if (type == "max") {
# Permutation Z statistic
z_ewtr_perm <- EWTR(n,m,nuntimes0_perm,max_follow0_perm,untimes0_perm,Time_perm,Delta_perm,dist_state0_perm,markov_ind,cov_perm,trt_perm)[[3]]
z_comp_perm <- COMP(n,Time_perm,Delta_perm,cov_perm,trt_perm)[[1]]
y[iperm] <- max((z_ewtr_perm - z_ewtr),(z_comp_perm - z_comp))
}
else {
stop(paste("Invalid type:", type, "- Please specify one of 'ewt', 'ewtr', 'rmt', 'wtr', 'rwtr', 'pwt', 'max'"))
}
iperm <- iperm + 1
}
return(y)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.