Nothing
library(quanteda)
library(wordvector)
corp <- head(data_corpus_inaugural, 59)
toks <- tokens(corp, remove_punct = TRUE, remove_symbols = TRUE,
concatenator = " ") %>%
tokens_remove(stopwords(), padding = TRUE) %>%
tokens_compound(data_dictionary_LSD2015, keep_unigrams = TRUE)
dfmt <- dfm(toks, remove_padding = TRUE)
wov_nn <- readRDS("../data/word2vec_v0.5.1.RDS")
wov_nm <- readRDS("../data/word2vec-norm_v0.5.1.RDS")
test_that("upgrade_pre06() works", {
wov_nn2 <- wordvector:::upgrade_pre06(wov_nn)
expect_equal(names(wov_nn2$values),
"word")
expect_equal(wov_nn2$type,
"cbow")
wov_nm2 <- wordvector:::upgrade_pre06(wov_nn)
expect_equal(names(wov_nm2$values),
"word")
expect_equal(wov_nm2$type,
"cbow")
})
test_that("as.matrix() works with old objects", {
skip_on_cran()
expect_identical(dim(as.matrix(wov_nn)), c(5360L, 10L))
expect_error(as.matrix(wov_nn, layer = "documents"),
"'arg' should be \"words\"")
expect_identical(dim(as.matrix(wov_nm)), c(5360L, 10L))
expect_error(as.matrix(wov_nm, layer = "documents"),
"'arg' should be \"words\"")
})
test_that("print() works", {
skip_on_cran()
expect_output(
print(wov_nn),
paste(
"",
"Call:",
"textmodel_word2vec(x = toks, dim = 10, min_count = 2, iter = 10, ",
" sample = 1, normalize = FALSE)",
"",
"10 dimensions; 5,360 words.", sep = "\n"), fixed = TRUE
)
expect_output(
print(wov_nm),
paste(
"",
"Call:",
"textmodel_word2vec(x = toks, dim = 10, min_count = 2, iter = 10, ",
" sample = 1, normalize = TRUE)",
"",
"10 dimensions; 5,360 words.", sep = "\n"), fixed = TRUE
)
})
test_that("as.textmodel_doc2vec() works", {
skip_on_cran()
wov_nn <- readRDS("../data/word2vec_v0.5.1.RDS")
expect_identical(
rownames(as.matrix(as.textmodel_doc2vec(dfmt, wov_nn))),
docnames(dfmt)
)
wov_nm <- readRDS("../data/word2vec-norm_v0.5.1.RDS")
expect_identical(
rownames(as.matrix(as.textmodel_doc2vec(dfmt, wov_nm))),
docnames(dfmt)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.