R/fit-action-model.R

Defines functions new_action_model extract_case_weights0 extract_mold0 fit_from_formula fit_from_xy fit.action_model update_model remove_model add_model

Documented in add_model remove_model update_model

#' Add a model to a workflow
#'
#' @description
#' - `add_model()` adds a parsnip model to the workflow.
#'
#' - `remove_model()` removes the model specification as well as any fitted
#'   model object. Any extra formulas are also removed.
#'
#' - `update_model()` first removes the model then adds the new specification to
#'   the workflow.
#'
#' @details
#' `add_model()` is a required step to construct a minimal workflow.
#'
#' @includeRmd man/rmd/indicators.Rmd details
#'
#' @inheritParams rlang::args_dots_empty
#'
#' @param x A workflow.
#'
#' @param spec A parsnip model specification.
#'
#' @param formula An optional formula override to specify the terms of the
#'   model. Typically, the terms are extracted from the formula or recipe
#'   preprocessing methods. However, some models (like survival and bayesian
#'   models) use the formula not to preprocess, but to specify the structure
#'   of the model. In those cases, a formula specifying the model structure
#'   must be passed unchanged into the model call itself. This argument is
#'   used for those purposes.
#'
#' @return
#' `x`, updated with either a new or removed model.
#'
#' @export
#' @examples
#' library(parsnip)
#'
#' lm_model <- linear_reg()
#' lm_model <- set_engine(lm_model, "lm")
#'
#' regularized_model <- set_engine(lm_model, "glmnet")
#'
#' workflow <- workflow()
#' workflow <- add_model(workflow, lm_model)
#' workflow
#'
#' workflow <- add_formula(workflow, mpg ~ .)
#' workflow
#'
#' remove_model(workflow)
#'
#' fitted <- fit(workflow, data = mtcars)
#' fitted
#'
#' remove_model(fitted)
#'
#' remove_model(workflow)
#'
#' update_model(workflow, regularized_model)
#' update_model(fitted, regularized_model)
add_model <- function(x, spec, ..., formula = NULL) {
  check_dots_empty()
  action <- new_action_model(spec, formula)
  add_action(x, action, "model")
}

#' @rdname add_model
#' @export
remove_model <- function(x) {
  validate_is_workflow(x)

  if (!has_spec(x)) {
    rlang::warn("The workflow has no model to remove.")
  }

  new_workflow(
    pre = x$pre,
    fit = new_stage_fit(),
    post = new_stage_post(actions = x$post$actions),
    trained = FALSE
  )
}


#' @rdname add_model
#' @export
update_model <- function(x, spec, ..., formula = NULL) {
  check_dots_empty()
  x <- remove_model(x)
  add_model(x, spec, formula = formula)
}

# ------------------------------------------------------------------------------

fit.action_model <- function(object, workflow, control, ...) {
  if (!is_control_workflow(control)) {
    abort("`control` must be a workflows control object created by `control_workflow()`.")
  }

  control_parsnip <- control$control_parsnip

  spec <- object$spec
  formula <- object$formula

  mold <- extract_mold0(workflow)
  case_weights <- extract_case_weights0(workflow)

  if (is.null(formula)) {
    fit <- fit_from_xy(spec, mold, case_weights, control_parsnip)
  } else {
    fit <- fit_from_formula(spec, mold, case_weights, control_parsnip, formula)
  }

  workflow$fit$fit <- fit

  # Only the workflow is returned
  workflow
}

fit_from_xy <- function(spec, mold, case_weights, control_parsnip) {
  fit_xy(
    spec,
    x = mold$predictors,
    y = mold$outcomes,
    case_weights = case_weights,
    control = control_parsnip
  )
}

fit_from_formula <- function(spec, mold, case_weights, control_parsnip, formula) {
  data <- cbind(mold$outcomes, mold$predictors)

  fit(
    spec,
    formula = formula,
    data = data,
    case_weights = case_weights,
    control = control_parsnip
  )
}

extract_mold0 <- function(workflow) {
  mold <- workflow$pre$mold

  if (is.null(mold)) {
    abort("No mold exists. `workflow` pre stage has not been run.", .internal = TRUE)
  }

  mold
}

extract_case_weights0 <- function(workflow) {
  if (!has_case_weights(workflow)) {
    return(NULL)
  }

  case_weights <- workflow$pre$case_weights

  if (is_null(case_weights)) {
    abort("No case weights exist. `workflow` pre stage has not been run.", .internal = TRUE)
  }

  case_weights
}

# ------------------------------------------------------------------------------

new_action_model <- function(spec, formula, ..., call = caller_env()) {
  check_dots_empty()

  if (!is_model_spec(spec)) {
    abort("`spec` must be a `model_spec`.", call = call)
  }

  mode <- spec$mode

  if (is_string(mode, string = "unknown")) {
    message <- c(
      "`spec` must have a known mode.",
      i = paste0(
        "Set the mode of `spec` by using `parsnip::set_mode()` or by setting ",
        "the mode directly in the parsnip specification function."
      )
    )

    abort(message, call = call)
  }

  if (!is.null(formula) && !is_formula(formula)) {
    abort("`formula` must be a formula, or `NULL`.", call = call)
  }

  if (!parsnip::spec_is_loaded(spec = spec) && inherits(spec, "model_spec")) {
    parsnip::prompt_missing_implementation(
      spec = spec,
      prompt = cli::cli_abort,
      call = call
    )
  }

  new_action_fit(spec = spec, formula = formula, subclass = "action_model")
}

Try the workflows package in your browser

Any scripts or data that you put into this service are public.

workflows documentation built on May 29, 2024, 3:57 a.m.