Nothing
skip_if_not_installed("kknn")
skip_if_not_installed("modeldata")
library(parsnip)
library(recipes)
library(hardhat)
data(two_class_dat, package = "modeldata")
xgb <- boost_tree(trees = 3) |> set_mode("classification")
rec <-
recipe(Class ~ A + B, two_class_dat) |>
step_normalize(A) |>
step_normalize(B)
sparse_bp <- default_recipe_blueprint(composition = "dgCMatrix")
test_that("update model", {
expect_no_error(
new_set <- update_workflow_model(two_class_res, "none_cart", spec = xgb)
)
expect_true(
inherits(
extract_spec_parsnip(new_set, id = "none_cart"),
"boost_tree"
)
)
expect_equal(new_set$result[[1]], list())
expect_no_error(
new_new_set <-
update_workflow_model(
new_set,
"none_glm",
spec = xgb,
formula = Class ~ log(A) + B
)
)
new_wflow <- extract_workflow(new_new_set, "none_glm")
expect_equal(
new_wflow$fit$actions$model$formula,
Class ~ log(A) + B
)
})
test_that("update recipe", {
expect_no_error(
new_set <- update_workflow_recipe(
two_class_res,
"yj_trans_cart",
recipe = rec
)
)
new_rec <- extract_recipe(new_set, id = "yj_trans_cart", estimated = FALSE)
expect_true(all(tidy(new_rec)$type == "normalize"))
expect_equal(new_set$result[[4]], list())
expect_no_error(
new_new_set <-
update_workflow_recipe(
new_set,
"yj_trans_cart",
recipe = rec,
blueprint = sparse_bp
)
)
new_wflow <- extract_workflow(new_new_set, "yj_trans_cart")
expect_equal(new_wflow$pre$actions$recipe$blueprint, sparse_bp)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.