Nothing
## ----message = FALSE-----------------------------------------------------
library(xspliner)
library(randomForest)
rf_iris <- randomForest(Petal.Width ~ Sepal.Length + Petal.Length + Species, data = iris)
model_xs <- xspline(Petal.Width ~
Sepal.Length +
xs(Petal.Length, effect = list(grid.resolution = 100), transition = list(bs = "cr")) +
xf(Species, transition = list(stat = "loglikelihood", value = 4)),
model = rf_iris)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~
Sepal.Length +
xs(Petal.Length) +
xf(Species),
model = rf_iris,
xs_opts = list(effect = list(grid.resolution = 100), transition = list(bs = "cr")),
xf_opts = list(transition = list(stat = "loglikelihood", value = 4))
)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~
xs(Sepal.Length, transition = list(k = 10)) +
xs(Petal.Length) +
xf(Species),
model = rf_iris,
xs_opts = list(effect = list(grid.resolution = 100), transition = list(bs = "cr")),
xf_opts = list(transition = list(stat = "loglikelihood", value = 4))
)
summary(model_xs)
## ------------------------------------------------------------------------
xs_opts_default
xf_opts_default
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~ Sepal.Length + Petal.Length + Species,
model = rf_iris,
consider = "all"
)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~ Sepal.Length + Petal.Length + Species,
model = rf_iris,
data = iris,
consider = "all"
)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~ Sepal.Length + Petal.Length + Species,
model = rf_iris,
data = iris,
consider = "all",
xf_opts = list(transition = list(alter = "never"))
)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~ Sepal.Length + Petal.Length + Species,
model = rf_iris,
data = iris,
consider = "all",
xs_opts = list(transition = list(alter = "never"))
)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~ ., model = rf_iris)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(Petal.Width ~ .,
model = rf_iris,
predictors = colnames(iris)[-c(2, 4)],
data = iris)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
model_xs <- xspline(rf_iris)
summary(model_xs)
## ----message = FALSE-----------------------------------------------------
library(pdp)
library(e1071)
data(boston)
svm_boston <- svm(chas ~ cmedv + rad + lstat, data = boston, probability = TRUE)
str(boston[, "rad"])
unique(boston$rad)
## ----error = TRUE--------------------------------------------------------
xs_model <- xspline(svm_boston)
## ------------------------------------------------------------------------
xs_model <- xspline(
svm_boston,
bare = "rad")
summary(xs_model)
## ----message = FALSE-----------------------------------------------------
library(DALEX)
rf_boston <- randomForest(lstat ~ cmedv + crim + chas, data = boston)
explainer <- explain(rf_boston, label = "boston")
model <- xspline(
explainer
)
summary(model)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.