| smape | R Documentation |
Calculate the symmetric mean absolute percentage error. This metric is in relative units.
smape(data, ...)
## S3 method for class 'data.frame'
smape(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
smape_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
data |
A |
... |
Not currently used. |
truth |
The column identifier for the true results
(that is |
estimate |
The column identifier for the predicted
results (that is also |
na_rm |
A |
case_weights |
The optional column identifier for case weights. This
should be an unquoted column name that evaluates to a numeric column in
|
This implementation of smape() is the "usual definition" where the
denominator is divided by two.
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For smape_vec(), a single numeric value (or NA).
Max Kuhn, Riaz Hedayati
Other numeric metrics:
ccc(),
huber_loss(),
huber_loss_pseudo(),
iic(),
mae(),
mape(),
mase(),
mpe(),
msd(),
poisson_log_loss(),
rmse(),
rpd(),
rpiq(),
rsq(),
rsq_trad()
Other accuracy metrics:
ccc(),
huber_loss(),
huber_loss_pseudo(),
iic(),
mae(),
mape(),
mase(),
mpe(),
msd(),
poisson_log_loss(),
rmse()
# Supply truth and predictions as bare column names
smape(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
smape(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.