Nothing
#' J-index
#'
#' @description
#' Youden's J statistic is defined as:
#'
#' [sens()] + [spec()] - 1
#'
#' A related metric is Informedness, see the Details section for the relationship.
#'
#' @details
#'
#' The value of the J-index ranges from \[0, 1\] and is `1` when there are
#' no false positives and no false negatives.
#'
#' The binary version of J-index is equivalent to the binary concept of
#' Informedness. Macro-weighted J-index is equivalent to multiclass informedness
#' as defined in Powers, David M W (2011), equation (42).
#'
#' @family class metrics
#' @templateVar fn j_index
#' @template event_first
#' @template multiclass
#' @template return
#'
#' @inheritParams sens
#'
#' @author Max Kuhn
#'
#' @references
#'
#' Youden, W.J. (1950). "Index for rating diagnostic tests". Cancer. 3: 32-35.
#'
#' Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Score to
#' ROC, Informedness, Markedness and Correlation". Journal of Machine Learning
#' Technologies. 2 (1): 37-63.
#'
#' @template examples-class
#'
#' @export
j_index <- function(data, ...) {
UseMethod("j_index")
}
j_index <- new_class_metric(
j_index,
direction = "maximize"
)
#' @rdname j_index
#' @export
j_index.data.frame <- function(data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...) {
class_metric_summarizer(
name = "j_index",
fn = j_index_vec,
data = data,
truth = !!enquo(truth),
estimate = !!enquo(estimate),
estimator = estimator,
na_rm = na_rm,
case_weights = !!enquo(case_weights),
event_level = event_level
)
}
#' @export
j_index.table <- function(data,
estimator = NULL,
event_level = yardstick_event_level(),
...) {
check_table(data)
estimator <- finalize_estimator(data, estimator)
metric_tibbler(
.metric = "j_index",
.estimator = estimator,
.estimate = j_index_table_impl(data, estimator, event_level)
)
}
#' @export
j_index.matrix <- function(data,
estimator = NULL,
event_level = yardstick_event_level(),
...) {
data <- as.table(data)
j_index.table(data, estimator, event_level)
}
#' @rdname j_index
#' @export
j_index_vec <- function(truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...) {
abort_if_class_pred(truth)
estimate <- as_factor_from_class_pred(estimate)
estimator <- finalize_estimator(truth, estimator)
check_class_metric(truth, estimate, case_weights, estimator)
if (na_rm) {
result <- yardstick_remove_missing(truth, estimate, case_weights)
truth <- result$truth
estimate <- result$estimate
case_weights <- result$case_weights
} else if (yardstick_any_missing(truth, estimate, case_weights)) {
return(NA_real_)
}
data <- yardstick_table(truth, estimate, case_weights = case_weights)
j_index_table_impl(data, estimator, event_level)
}
j_index_table_impl <- function(data, estimator, event_level) {
if (is_binary(estimator)) {
j_index_binary(data, event_level)
} else {
w <- get_weights(data, estimator)
out_vec <- j_index_multiclass(data, estimator)
# Set `na.rm = TRUE` to remove undefined values from weighted computation (#265)
stats::weighted.mean(out_vec, w, na.rm = TRUE)
}
}
j_index_binary <- function(data, event_level) {
sens_binary(data, event_level) + spec_binary(data, event_level) - 1
}
j_index_multiclass <- function(data, estimator) {
sens_multiclass(data, estimator) + spec_multiclass(data, estimator) - 1
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.