Nothing
#' Liver Pathology Data
#'
#' @details These data have the results of a _x_-ray examination
#' to determine whether liver is abnormal or not (in the `scan`
#' column) versus the more extensive pathology results that
#' approximate the truth (in `pathology`).
#'
#' @name pathology
#' @aliases pathology
#' @docType data
#' @return \item{pathology}{a data frame}
#'
#' @source Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 1:
#' sensitivity and specificity,'' *British Medical Journal*,
#' vol 308, 1552.
#'
#'
#' @keywords datasets
#' @examples
#' data(pathology)
#' str(pathology)
NULL
#' Solubility Predictions from MARS Model
#'
#' @details For the solubility data in Kuhn and Johnson (2013),
#' these data are the test set results for the MARS model. The
#' observed solubility (in column `solubility`) and the model
#' results (`prediction`) are contained in the data.
#'
#' @name solubility_test
#' @aliases solubility_test
#' @docType data
#' @return \item{solubility_test}{a data frame}
#'
#' @source Kuhn, M., Johnson, K. (2013) *Applied Predictive
#' Modeling*, Springer
#'
#' @keywords datasets
#' @examples
#' data(solubility_test)
#' str(solubility_test)
NULL
#' Multiclass Probability Predictions
#'
#' @details This data frame contains the predicted classes and
#' class probabilities for a linear discriminant analysis model fit
#' to the HPC data set from Kuhn and Johnson (2013). These data are
#' the assessment sets from a 10-fold cross-validation scheme. The
#' data column columns for the true class (`obs`), the class
#' prediction (`pred`) and columns for each class probability
#' (columns `VF`, `F`, `M`, and `L`). Additionally, a column for
#' the resample indicator is included.
#'
#' @name hpc_cv
#' @aliases hpc_cv
#' @docType data
#' @return \item{hpc_cv}{a data frame}
#'
#' @source Kuhn, M., Johnson, K. (2013) *Applied Predictive
#' Modeling*, Springer
#'
#' @keywords datasets
#' @examples
#' data(hpc_cv)
#' str(hpc_cv)
#'
#' # `obs` is a 4 level factor. The first level is `"VF"`, which is the
#' # "event of interest" by default in yardstick. See the Relevant Level
#' # section in any classification function (such as `?pr_auc`) to see how
#' # to change this.
#' levels(hpc_cv$obs)
NULL
#' Two Class Predictions
#'
#' @details These data are a test set form a model built for two
#' classes ("Class1" and "Class2"). There are columns for the true
#' and predicted classes and column for the probabilities for each
#' class.
#'
#' @name two_class_example
#' @aliases two_class_example
#' @docType data
#' @return \item{two_class_example}{a data frame}
#'
#' @keywords datasets
#' @examples
#' data(two_class_example)
#' str(two_class_example)
#'
#' # `truth` is a 2 level factor. The first level is `"Class1"`, which is the
#' # "event of interest" by default in yardstick. See the Relevant Level
#' # section in any classification function (such as `?pr_auc`) to see how
#' # to change this.
#' levels(hpc_cv$obs)
NULL
#' Survival Analysis Results
#'
#' @details These data contain plausible results from applying predictive
#' survival models to the [lung] data set using the censored package.
#'
#' @name lung_surv
#' @aliases lung_surv
#' @docType data
#' @return \item{lung_surv}{a data frame}
#'
#' @keywords datasets
#' @examples
#' data(lung_surv)
#' str(lung_surv)
#'
#' # `surv_obj` is a `Surv()` object
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.