Nothing
#' Root mean squared error
#'
#' Calculate the root mean squared error. `rmse()` is a metric that is in
#' the same units as the original data.
#'
#' @family numeric metrics
#' @family accuracy metrics
#' @templateVar fn rmse
#' @template return
#'
#' @param data A `data.frame` containing the columns specified by the `truth`
#' and `estimate` arguments.
#'
#' @param truth The column identifier for the true results
#' (that is `numeric`). This should be an unquoted column name although
#' this argument is passed by expression and supports
#' [quasiquotation][rlang::quasiquotation] (you can unquote column
#' names). For `_vec()` functions, a `numeric` vector.
#'
#' @param estimate The column identifier for the predicted
#' results (that is also `numeric`). As with `truth` this can be
#' specified different ways but the primary method is to use an
#' unquoted variable name. For `_vec()` functions, a `numeric` vector.
#'
#' @param na_rm A `logical` value indicating whether `NA`
#' values should be stripped before the computation proceeds.
#'
#' @param case_weights The optional column identifier for case weights. This
#' should be an unquoted column name that evaluates to a numeric column in
#' `data`. For `_vec()` functions, a numeric vector,
#' [hardhat::importance_weights()], or [hardhat::frequency_weights()].
#'
#' @param ... Not currently used.
#'
#' @author Max Kuhn
#'
#' @template examples-numeric
#'
#' @export
#'
rmse <- function(data, ...) {
UseMethod("rmse")
}
rmse <- new_numeric_metric(
rmse,
direction = "minimize"
)
#' @rdname rmse
#' @export
rmse.data.frame <- function(data,
truth,
estimate,
na_rm = TRUE,
case_weights = NULL,
...) {
numeric_metric_summarizer(
name = "rmse",
fn = rmse_vec,
data = data,
truth = !!enquo(truth),
estimate = !!enquo(estimate),
na_rm = na_rm,
case_weights = !!enquo(case_weights)
)
}
#' @export
#' @rdname rmse
rmse_vec <- function(truth,
estimate,
na_rm = TRUE,
case_weights = NULL,
...) {
check_numeric_metric(truth, estimate, case_weights)
if (na_rm) {
result <- yardstick_remove_missing(truth, estimate, case_weights)
truth <- result$truth
estimate <- result$estimate
case_weights <- result$case_weights
} else if (yardstick_any_missing(truth, estimate, case_weights)) {
return(NA_real_)
}
rmse_impl(truth, estimate, case_weights = case_weights)
}
rmse_impl <- function(truth, estimate, case_weights) {
errors <- (truth - estimate)^2
sqrt(yardstick_mean(errors, case_weights = case_weights))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.