Nothing
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
###################################################################
test_that("switch event definition", {
rlang::local_options(
yardstick.event_first = FALSE,
lifecycle_verbosity = "quiet"
)
expect_equal(
sens(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
77 / 86
)
expect_equal(
sens(path_tbl)[[".estimate"]],
77 / 86
)
expect_equal(
spec(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
162 / 258
)
expect_equal(
spec(path_tbl)[[".estimate"]],
162 / 258
)
expect_equal(
j_index(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
(162 / 258) + (77 / 86) - 1
)
expect_equal(
mcc(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
((231 * 54) - (32 * 27)) / sqrt((231 + 32) * (231 + 27) * (54 + 32) * (54 + 27))
)
})
test_that("global option is ignored in multiclass metrics", {
rlang::local_options(lifecycle_verbosity = "quiet")
expect_equal(
rlang::with_options(
accuracy(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
accuracy(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
bal_accuracy(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
bal_accuracy(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
detection_prevalence(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
detection_prevalence(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
f_meas(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
f_meas(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
j_index(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
j_index(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
kap(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
kap(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
mcc(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
mcc(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
npv(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
npv(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
ppv(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
ppv(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
precision(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
precision(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
recall(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
recall(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
sens(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
sens(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
spec(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
spec(hpc_cv, obs, pred)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
gain_capture(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
gain_capture(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
gain_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
gain_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
lift_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
lift_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
mn_log_loss(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
mn_log_loss(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
pr_auc(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
pr_auc(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
pr_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
pr_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
# testing hand till
expect_equal(
rlang::with_options(
roc_auc(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
roc_auc(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
# testing macro
expect_equal(
rlang::with_options(
roc_auc(hpc_cv, obs, VF:L, estimator = "macro")[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
roc_auc(hpc_cv, obs, VF:L, estimator = "macro")[[".estimate"]],
yardstick.event_first = FALSE
)
)
expect_equal(
rlang::with_options(
roc_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = TRUE
),
rlang::with_options(
roc_curve(hpc_cv, obs, VF:L)[[".estimate"]],
yardstick.event_first = FALSE
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.