Nothing
test_that("Mean Absolute Percentage Error", {
ex_dat <- generate_numeric_test_data()
not_na <- !is.na(ex_dat$pred_na)
expect_equal(
mape(ex_dat, truth = "obs", estimate = "pred")[[".estimate"]],
100 * mean(abs((ex_dat$obs - ex_dat$pred) / ex_dat$obs))
)
expect_equal(
mape(ex_dat, obs, pred_na)[[".estimate"]],
100 * mean(abs((ex_dat$obs[not_na] - ex_dat$pred[not_na]) / ex_dat$obs[not_na]))
)
})
test_that("`mape()` computes expected values when singular `truth` is `0` (#271)", {
expect_identical(
mape_vec(truth = 0, estimate = 1),
Inf
)
expect_identical(
mape_vec(truth = 0, estimate = -1),
Inf
)
expect_identical(
mape_vec(truth = 0, estimate = 0),
NaN
)
})
test_that("Weighted results are the same as scikit-learn", {
solubility_test$weights <- read_weights_solubility_test()
zero_solubility <- solubility_test$solubility == 0
solubility_test_not_zero <- solubility_test[!zero_solubility, ]
expect_equal(
mape(solubility_test_not_zero, solubility, prediction, case_weights = weights)[[".estimate"]],
read_pydata("py-mape")$case_weight * 100
)
})
test_that("works with hardhat case weights", {
solubility_test$weights <- floor(read_weights_solubility_test())
df <- solubility_test
imp_wgt <- hardhat::importance_weights(df$weights)
freq_wgt <- hardhat::frequency_weights(df$weights)
expect_no_error(
mape_vec(df$solubility, df$prediction, case_weights = imp_wgt)
)
expect_no_error(
mape_vec(df$solubility, df$prediction, case_weights = freq_wgt)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.