Nothing
test_that("basic results", {
# With the mclust pakcage, BrierScore(hpc_cv %>% select(VF:L) %>% as.matrix, hpc_cv$obs)
hpc_exp <- 0.21083946
expect_equal(
yardstick:::brier_factor(hpc_cv$obs, hpc_cv %>% dplyr::select(VF:L)),
hpc_exp,
tolerance = 0.01
)
hpc_inds <- model.matrix(~ . - 1, data = hpc_cv %>% dplyr::select(obs))
expect_equal(
yardstick:::brier_ind(hpc_inds, hpc_cv %>% dplyr::select(VF:L)),
hpc_exp,
tolerance = 0.01
)
expect_equal(
yardstick:::brier_class(hpc_cv, obs, VF:L),
dplyr::tibble(.metric = "brier_class", .estimator = "multiclass", .estimate = hpc_exp),
tolerance = 0.01
)
# ----------------------------------------------------------------------------
# two classes
# BrierScore(two_class_example %>% dplyr::select(Class1, Class2) %>% as.matrix, two_class_example$truth)
two_cls_exp <- 0.10561859
expect_equal(
yardstick:::brier_factor(two_class_example$truth, two_class_example[, 2:3]),
two_cls_exp,
tolerance = 0.01
)
expect_equal(
yardstick:::brier_factor(two_class_example$truth, two_class_example[, 2, drop = TRUE]),
two_cls_exp,
tolerance = 0.01
)
# ----------------------------------------------------------------------------
# with missing data
hpc_miss <- hpc_cv
hpc_miss$obs[1] <- NA
hpc_miss$L[2] <- NA
# With the mclust pakcage, BrierScore(hpc_cv[-(1:2), 3:6]%>% as.matrix, hpc_cv$obs[-(1:2)])
hpc_miss_exp <- 0.21095817
expect_equal(
brier_class(hpc_miss, obs, VF:L)$.estimate,
hpc_miss_exp,
tolerance = 0.01
)
# ----------------------------------------------------------------------------
# with case weights
wts <- rep(1, nrow(hpc_cv))
wts[1] <- 5
hpc_wts <- hpc_cv[c(rep(1, 4), 1:nrow(hpc_cv)), ]
expect_equal(
yardstick:::brier_factor(hpc_cv$obs, hpc_cv %>% dplyr::select(VF:L)),
yardstick:::brier_factor(hpc_wts$obs, hpc_wts %>% dplyr::select(VF:L)),
tolerance = 0.01
)
})
test_that("works with hardhat case weights", {
df <- two_class_example
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
brier_class_vec(df$truth, df$Class1, case_weights = imp_wgt)
)
expect_no_error(
brier_class_vec(df$truth, df$Class1, case_weights = freq_wgt)
)
})
test_that("errors with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
estimate <- two_class_example$Class1
expect_snapshot(
error = TRUE,
brier_class_vec(cp_truth, estimate)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.