Nothing
test_that("`event_level = 'second'` works", {
df <- two_class_example
df_rev <- df
df_rev$truth <- stats::relevel(df_rev$truth, "Class2")
expect_equal(
pr_auc_vec(df$truth, df$Class1),
pr_auc_vec(df_rev$truth, df_rev$Class1, event_level = "second")
)
})
# ------------------------------------------------------------------------------
test_that("Multiclass PR AUC", {
hpc_f1 <- data_hpc_fold1()
expect_equal(
pr_auc(hpc_f1, obs, VF:L, estimator = "macro")[[".estimate"]],
hpc_fold1_macro_metric(pr_auc_binary)
)
expect_equal(
pr_auc(hpc_f1, obs, VF:L, estimator = "macro_weighted")[[".estimate"]],
hpc_fold1_macro_weighted_metric(pr_auc_binary)
)
})
# ------------------------------------------------------------------------------
test_that("Two class PR AUC matches sklearn", {
# Note that these values are different from `MLmetrics::PRAUC()`,
# see #93 about how duplicates and end points are handled
sklearn_curve <- read_pydata("py-pr-curve")$binary
sklearn_auc <- auc(sklearn_curve$recall, sklearn_curve$precision)
expect_equal(
pr_auc(two_class_example, truth = "truth", "Class1")[[".estimate"]],
sklearn_auc
)
expect_equal(
pr_auc(two_class_example, truth, Class1)[[".estimate"]],
sklearn_auc
)
})
test_that("Two class weighted PR AUC matches sklearn", {
sklearn_curve <- read_pydata("py-pr-curve")$case_weight$binary
sklearn_auc <- auc(sklearn_curve$recall, sklearn_curve$precision)
two_class_example$weight <- read_weights_two_class_example()
expect_equal(
pr_auc(two_class_example, truth, Class1, case_weights = weight)[[".estimate"]],
sklearn_auc
)
})
test_that("grouped multiclass (one-vs-all) weighted example matches expanded equivalent", {
hpc_cv$weight <- rep(1, times = nrow(hpc_cv))
hpc_cv$weight[c(100, 200, 150, 2)] <- 5
hpc_cv <- dplyr::group_by(hpc_cv, Resample)
hpc_cv_expanded <- hpc_cv[vec_rep_each(seq_len(nrow(hpc_cv)), times = hpc_cv$weight), ]
expect_identical(
pr_auc(hpc_cv, obs, VF:L, case_weights = weight, estimator = "macro"),
pr_auc(hpc_cv_expanded, obs, VF:L, estimator = "macro")
)
expect_identical(
pr_auc(hpc_cv, obs, VF:L, case_weights = weight, estimator = "macro_weighted"),
pr_auc(hpc_cv_expanded, obs, VF:L, estimator = "macro_weighted")
)
})
test_that("works with hardhat case weights", {
df <- two_class_example
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
pr_auc_vec(df$truth, df$Class1, case_weights = imp_wgt)
)
expect_no_error(
pr_auc_vec(df$truth, df$Class1, case_weights = freq_wgt)
)
})
test_that("errors with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
estimate <- two_class_example$Class1
expect_snapshot(
error = TRUE,
pr_auc_vec(cp_truth, estimate)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.