Nothing
test_that("AUNU is equivalent to macro estimator", {
hpc_f1 <- data_hpc_fold1()
expect_equal(
roc_auc(hpc_f1, obs, VF:L, estimator = "macro")[[".estimate"]],
roc_aunu(hpc_f1, obs, VF:L)[[".estimate"]]
)
})
test_that("AUNU is equivalent to macro estimator with case weights", {
hpc_cv$weight <- read_weights_hpc_cv()
expect_equal(
roc_auc(hpc_cv, obs, VF:L, estimator = "macro", case_weights = weight)[[".estimate"]],
roc_aunu(hpc_cv, obs, VF:L, case_weights = weight)[[".estimate"]]
)
})
test_that("AUNU errors on binary case", {
expect_snapshot(
error = TRUE,
roc_aunu(two_class_example, truth, Class1)
)
})
test_that("AUNU results match mlr for soybean example", {
soybeans <- data_soybean()
# Code to generate this value and `data_soybean()` is in `helper-data.R`
measures_mlr <- 0.963473055084008
expect_equal(
roc_aunu(soybeans, truth, `2-4-d-injury`:`rhizoctonia-root-rot`)[[".estimate"]],
measures_mlr
)
})
# ------------------------------------------------------------------------------
test_that("roc_aunu() - `options` is deprecated", {
skip_if(getRversion() <= "3.5.3", "Base R used a different deprecated warning class.")
rlang::local_options(lifecycle_verbosity = "warning")
expect_snapshot({
out <- roc_aunu(two_class_example, truth, Class1, Class2, options = 1)
})
expect_identical(
out,
roc_aunu(two_class_example, truth, Class1, Class2),
)
expect_snapshot({
out <- roc_aunu_vec(
truth = two_class_example$truth,
estimate = as.matrix(two_class_example[c("Class1", "Class2")]),
options = 1
)
})
expect_identical(
out,
roc_aunu_vec(
truth = two_class_example$truth,
estimate = as.matrix(two_class_example[c("Class1", "Class2")])
)
)
})
test_that("works with hardhat case weights", {
df <- two_class_example
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
roc_aunu_vec(df$truth, as.matrix(df[c("Class1", "Class2")]), case_weights = imp_wgt)
)
expect_no_error(
roc_aunu_vec(df$truth, as.matrix(df[c("Class1", "Class2")]), case_weights = freq_wgt)
)
})
test_that("errors with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
estimate <- as.matrix(two_class_example[c("Class1", "Class2")])
expect_snapshot(
error = TRUE,
roc_aunu_vec(cp_truth, estimate)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.