Description Usage Arguments Details Value Functions Examples
Compute the recommended next best dose.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestMTD,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestNCRM,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestNCRM,numeric,Samples,Model,DataParts'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature
## 'NextBestThreePlusThree,missing,missing,missing,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature
## 'NextBestDualEndpoint,numeric,Samples,DualEndpoint,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestMinDist,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature
## 'NextBestTDsamples,numeric,Samples,LogisticIndepBeta,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestTD,numeric,missing,LogisticIndepBeta,Data'
nextBest(nextBest, doselimit, model, data, SIM = FALSE, ...)
## S4 method for signature 'NextBestMaxGain,numeric,missing,ModelTox,DataDual'
nextBest(nextBest, doselimit, model, data, Effmodel, SIM = FALSE, ...)
## S4 method for signature
## 'NextBestMaxGainSamples,numeric,Samples,ModelTox,DataDual'
nextBest(
nextBest,
doselimit,
samples,
model,
data,
Effmodel,
Effsamples,
SIM = FALSE,
...
)
## S4 method for signature 'NextBestMTDCRM,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestKadaneBay,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestTwoParBay,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestMTDprob,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
## S4 method for signature 'NextBestMinDist,numeric,Samples,Model,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)
|
nextBest |
The rule, an object of class |
doselimit |
The maximum allowed next dose. If this is an empty (length 0) vector, then no dose limit will be applied in the course of dose recommendation calculation, and a corresponding warning is given. |
samples |
the |
model |
The model input, an object of class |
data |
The data input, an object of class |
... |
possible additional arguments without method dispatch |
SIM |
internal command to notify if this method is used within simulations. Default as FALSE |
Effmodel |
the efficacy model of |
Effsamples |
the efficacy samples of |
This function outputs the next best dose recommendation based on the
corresponding rule nextBest
, the posterior samples
from the
model
and the underlying data
.
a list with the next best dose (element value
)
on the grid defined in data
, and a plot depicting this recommendation
(element plot
). In case of multiple plots also an element singlePlots
is included which returns the list of single plots, which allows for further
customization of these. Also additional list elements describing the outcome
of the rule can be contained.
nextBest,NextBestMTD,numeric,Samples,Model,Data-method
: Find the next best dose based on the MTD rule
nextBest,NextBestNCRM,numeric,Samples,Model,Data-method
: Find the next best dose based on the NCRM method. The
additional list element probs
contains the target and overdosing
probabilities (across all doses in the dose grid)
used in the derivation of the next best dose.
nextBest,NextBestNCRM,numeric,Samples,Model,DataParts-method
: Find the next best dose based on the NCRM method when
two parts trial is used.
nextBest,NextBestThreePlusThree,missing,missing,missing,Data-method
: Find the next best dose based on the 3+3 method
nextBest,NextBestDualEndpoint,numeric,Samples,DualEndpoint,Data-method
: Find the next best dose based on the dual endpoint
model. The additional list element probs
contains the target and
overdosing probabilities (across all doses in the dose grid) used in the
derivation of the next best dose.
nextBest,NextBestMinDist,numeric,Samples,Model,Data-method
: Method for NextBestMinDist
class, which will give
the dose which is below the dose limit and has an estimated DLT probability
which is closest to the target dose.
nextBest,NextBestTDsamples,numeric,Samples,LogisticIndepBeta,Data-method
: Find the next best dose based on the 'NextBestTDsamples'
class rule. This a method based only on the DLE responses and for
LogisticIndepBeta
model class object involving DLE samples
nextBest,NextBestTD,numeric,missing,LogisticIndepBeta,Data-method
: Find the next best dose based on the 'NextBestTD'
class rule. This a method based only on the DLE responses and for
LogisticIndepBeta
model class object without DLE samples
nextBest,NextBestMaxGain,numeric,missing,ModelTox,DataDual-method
: for slots nextBest
,doselimit
, data
and SIM
. This is
a function to find the next best dose based on the 'NextBestMaxGain'
class rule. This a method based on the DLE responses and efficacy responses without DLE and
efficacy samples.
nextBest,NextBestMaxGainSamples,numeric,Samples,ModelTox,DataDual-method
: for slots nextBest
,doselimit
, data
and SIM
. This is
a function to find the next best dose based on the 'NextBestMaxGainSamples'
class rule. This a method based on the DLE responses and efficacy responses with DLE and
efficacy samples. Effmodel must be of class Effloglog
or
EffFlexi
.
nextBest,NextBestMTDCRM,numeric,Samples,Model,Data-method
: Find the next best dose based on CRM MTD allocation
probability
nextBest,NextBestKadaneBay,numeric,Samples,Model,Data-method
: Find the next best dose based on MTD estimate with highest
probability to be the MTD
nextBest,NextBestTwoParBay,numeric,Samples,Model,Data-method
: Find the next best dose based on MTD estimate with highest
probability to be the MTD
nextBest,NextBestMTDprob,numeric,Samples,Model,Data-method
: Find the next best dose based on MTD estimate with highest
probability to be the MTD
nextBest,NextBestMinDist,numeric,Samples,Model,Data-method
: Find the next best dose based on the minimal distance to
the target
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | # nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestMTD'
mtdNextBest <- NextBestMTD(target=0.33,
derive=
function(mtdSamples){
quantile(mtdSamples, probs=0.25)
})
# Calculate the next best dose
doseRecommendation <- nextBest(mtdNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# nolint end
# nolint start
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Look at the probabilities
doseRecommendation$probs
# nolint end
# nolint start
# create an object of class 'DataParts'
data <- DataParts(x=c(0.1,0.5,1.5),
y=c(0,0,0),
doseGrid=c(0.1,0.5,1.5,3,6,
seq(from=10,to=80,by=2)),
part=c(1L,1L,1L),
nextPart=1L,
part1Ladder=c(0.1,0.5,1.5,3,6,10))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
ref_dose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
myIncrements <- IncrementsRelativeParts(dltStart=0,
cleanStart=1)
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples,
model=model,
data=data)
# nolint end
# Create the data
data <- Data(x=c(5, 5, 5, 10, 10, 10),
y=c(0, 0, 0, 0, 1, 0),
cohort=c(0, 0, 0, 1, 1, 1),
doseGrid=
c(0.1, 0.5, 1.5, 3, 5,
seq(from=10, to=80, by=2)))
# The rule to select the next best dose will be based on the 3+3 method
myNextBest <- NextBestThreePlusThree()
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
data=data)
# Create the data
data <- DataDual(
x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10,
20, 20, 20, 40, 40, 40, 50, 50, 50),
y=c(0, 0, 0, 0, 0, 0, 1, 0,
0, 1, 1, 0, 0, 1, 0, 1, 1),
w=c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.55, 0.6,
0.52, 0.54, 0.56, 0.43, 0.41, 0.39, 0.34, 0.38, 0.21),
doseGrid=c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the Dual-Endpoint model (in this case RW1)
model <- DualEndpointRW(mu = c(0, 1),
Sigma = matrix(c(1, 0, 0, 1), nrow=2),
sigma2betaW = 0.01,
sigma2W = c(a=0.1, b=0.1),
rho = c(a=1, b=1),
smooth = "RW1")
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=500)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# In this case target a dose achieving at least 0.9 of maximum biomarker level (efficacy)
# and with a probability below 0.25 that prob(DLT)>0.35 (safety)
myNextBest <- NextBestDualEndpoint(target=c(0.9, 1),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples,
model=model,
data=data)
## joint plot
print(doseRecommendation$plot)
## show customization of single plot
variant1 <- doseRecommendation$singlePlots$plot1 + xlim(0, 20)
print(variant1)
## we need a data object with doses >= 1:
data<-Data(x=c(25,50,50,75,150,200,225,300),
y=c(0,0,0,0,1,1,1,1),
doseGrid=seq(from=25,to=300,by=25))
##The 'nextBest' method using NextBestTDsamples' rules class object
## That is dose-esclation procedure using the 'logisticIndepBeta' DLE model involving DLE samples
## model must be of 'LogisticIndepBeta' class
model<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
##Define the options for MCMC
options <- McmcOptions(burnin=100,step=2,samples=1000)
##Then genreate the samples
samples <- mcmc(data, model, options)
##target probabilities of the occurrence of a DLE during trial and at the end of trial are
## defined as 0.35 and 0.3, respectively
##Specified in 'derive' such that the 30% posterior quantile of the TD35 and TD30 samples
## will be used as TD35 and TD30 estimates
tdNextBest<-NextBestTDsamples(targetDuringTrial=0.35,targetEndOfTrial=0.3,
derive=function(TDsamples){quantile(TDsamples,probs=0.3)})
##doselimit is the maximum allowable dose level to be given to subjects
RecommendDose<-nextBest(tdNextBest,doselimit=max(data@doseGrid),samples=samples,
model=model,data=data)
## we need a data object with doses >= 1:
data<-Data(x=c(25,50,50,75,150,200,225,300),
y=c(0,0,0,0,1,1,1,1),
doseGrid=seq(from=25,to=300,by=25))
##The 'nextBest' method using NextBestTD' rules class object
## That is dose-esclation procedure using the 'logisticIndepBeta' DLE model involving DLE samples
## model must be of 'LogisticIndepBeta' class
model<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
##target probabilities of the occurrence of a DLE during trial and at the end of trial
## are defined as 0.35 and 0.3, respectively
tdNextBest<-NextBestTD(targetDuringTrial=0.35,targetEndOfTrial=0.3)
##doselimit is the maximum allowable dose level to be given to subjects
RecommendDose<- nextBest(tdNextBest,
doselimit=max(data@doseGrid),
model=model,
data=data)
## we need a data object with doses >= 1:
data <-DataDual(x=c(25,50,25,50,75,300,250,150),
y=c(0,0,0,0,0,1,1,0),
w=c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid=seq(25,300,25),placebo=FALSE)
##The 'nextBest' method using NextBestMaxGain' rules class object
## using the 'ModelTox' class DLE model
## DLEmodel e.g 'LogisticIndepBeta' class
DLEmodel<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
## using the 'ModelEff' class efficacy model
## Effmodel e.g 'Effloglog' class
Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),nu=c(a=1,b=0.025),data=data,c=0)
##target probabilities of the occurrence of a DLE during trial and at the
## end of trial are defined as
## 0.35 and 0.3, respectively
mynextbest<-NextBestMaxGain(DLEDuringTrialtarget=0.35,DLEEndOfTrialtarget=0.3)
##doselimit is the maximum allowable dose level to be given to subjects
RecommendDose<-nextBest(mynextbest,doselimit=300,model=DLEmodel,Effmodel=Effmodel,data=data)
data <-DataDual(x=c(25,50,25,50,75,300,250,150),
y=c(0,0,0,0,0,1,1,0),
w=c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid=seq(25,300,25),placebo=FALSE)
##The 'nextBest' method using NextBestMaxGainSamples' rules class object
## using the 'ModelTox' class DLE model
## DLEmodel e.g 'LogisticIndepBeta' class
DLEmodel<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
## using the 'ModelEff' class efficacy model
## Effmodel e.g 'Effloglog' class
Effmodel<-Effloglog(c(1.223,2.513),c(25,300),nu=c(a=1,b=0.025),data=data,c=0)
##DLE and efficacy samples must be of 'Samples' Class
DLEsamples<-mcmc(data,DLEmodel,options)
Effsamples<-mcmc(data,Effmodel,options)
##target probabilities of the occurrence of a DLE during trial and at the end of trial
## are defined as 0.35 and 0.3, respectively
## Using 30% posterior quantile of the TD35 and TD30 samples as estimates of TD35 and TD30,
## function specified in TDderive slot
## Using the 50% posterior quantile of the Gstar (the dose which gives the maxim gain value)
## samples as Gstar estimate,function specified in Gstarderive slot
mynextbest<-NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3,
TDderive=function(TDsamples){
quantile(TDsamples,prob=0.3)},
Gstarderive=function(Gstarsamples){
quantile(Gstarsamples,prob=0.5)})
RecommendDose<-nextBest(mynextbest,doselimit=max(data@doseGrid),samples=DLEsamples,model=DLEmodel,
data=data,Effmodel=Effmodel,Effsamples=Effsamples)
## now using the 'EffFlexi' class efficacy model:
##The 'nextBest' method using NextBestMaxGainSamples' rules class object for 'EffFlexi' model class
## using the 'ModelTox' class DLE model
## DLEmodel e.g 'LogisticIndepBeta' class
Effmodel<- EffFlexi(Eff=c(1.223, 2.513),Effdose=c(25,300),
sigma2=c(a=0.1,b=0.1),
sigma2betaW=c(a=20,b=50),smooth="RW2",data=data)
##DLE and efficacy samples must be of 'Samples' Class
DLEsamples<-mcmc(data,DLEmodel,options)
Effsamples<-mcmc(data,Effmodel,options)
##target probabilities of the occurrence of a DLE during trial and at the
## end of trial are defined as 0.35 and 0.3, respectively
## Using 30% posterior quantile of the TD35 and TD30 samples as estimates of
## TD35 and TD30, function specified in TDderive slot
## Using the 50% posterio quantile of the Gstar (the dose which gives the maximum
## gain value) samples as Gstar estimate,function specified in Gstarderive slot
mynextbest<-NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3,
TDderive=function(TDsamples){
quantile(TDsamples,prob=0.3)},
Gstarderive=function(Gstarsamples){
quantile(Gstarsamples,prob=0.5)})
RecommendDose<-nextBest(mynextbest,doselimit=max(data@doseGrid),samples=DLEsamples,
model=DLEmodel,
data=data,Effmodel=Effmodel,Effsamples=Effsamples)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.