# nolint start
# Create the data
data <- DataDA(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)),
u=c(42,30,15,5,20,25,30,60),
t0=c(0,15,30,40,55,70,75,85),
Tmax=60)
# Initialize the CRM model used to model the data
npiece_ <- 10
lambda_prior<-function(k){
npiece_/(data@Tmax*(npiece_-k+0.5))
}
model<-DALogisticLogNormal(mean=c(-0.85,1),
cov=matrix(c(1,-0.5,-0.5,1),nrow=2),
ref_dose=56,
npiece=npiece_,
l=as.numeric(t(apply(as.matrix(c(1:npiece_),1,npiece_),2,lambda_prior))),
C_par=2)
#Obtain the posterior
options <- McmcOptions(burnin=10,
step=2,
samples=1e2)
set.seed(94)
samples <- mcmc (data,model,options)
# Extract the posterior mean hazard (and empirical 2.5 and 97.5 percentile)
# for the piecewise exponential model
# If hazard=FALSE, the posterior PEM will be plot
fitted <- fitPEM(object = samples,
model = model,
data=data,
quantiles=c(0.025,0.975),
middle=mean,
hazard=TRUE)
# nolint end
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.