View source: R/internal_functions.R View source: R/LAI_daily.R
LAI_daily | R Documentation |
This is a function convert in daily values the downloaded LAI images for a location from the Copernicus Vito portal.
LAI_daily(star_data = NA, end_data = NA, LAI_rast = NA, crop_area = NA)
LAI_rast |
raster with 10 day (+ gaps) LAI layers |
crop_area |
a sf polygon with desirable the extent |
start_date |
start date of the images , e.g. "2017-12-01" |
end_date |
, end date of the images |
a raster with daily values of LAI
# file list downloaded from get_LAI
file_names <- list.files(path=paste0("D:/Data-Modelling/","LAI/"), pattern="*.nc", recursive=TRUE)
file_names <- file_names[1:173]
file_names_patch <- sapply(1:length(file_names), FUN = function(i) paste0("D:/Data-Modelling/", "LAI/", file_names[i]))
names(nc_open("D:/Data-Modelling//LAI/2020/LAI_20201231.nc")$var)
LAI_copernicus_globe <- terra::rast(file_names_patch, "LAI")
# crop to EU to reduce size
LAI_EU <- terra::crop(LAI_copernicus_globe, terra::ext(-10.125, 30.125, 29.875, 65.125))
plot(LAI_EU[[121]])
rm(LAI_copernicus_globe)
# layers name and time
names(LAI_EU) <- rev(LAI_links[[2]])
terra::time(LAI_EU) <- lubridate::ymd(rev(LAI_links[[2]]))
# save
terra::writeRaster(LAI_EU, "LAI_EU.tif", overwrite = TRUE)
LAI_Berlin <- LAI_daily(star_data = as.Date("2018-01-10", tz="UTC"),
end_data = as.Date("2022-09-10", tz="UTC"),
LAI_rast = LAI_EU,
crop_area = obj_locations_cities$DE_Berlin_TUCC$latlon$buffer_dist)
plot(LAI_Berlin[[c(2,10,30,120)]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.