map_urbanET | R Documentation |
This is function map Urban ET based on the SCOPE outputs according to a selected period.
map_urbanET(
dataset,
function_var,
function_time,
output_vars,
period_var = "annual",
input_raster,
NA_cells,
Input_vector,
veg_fraction,
extract_fun = "max"
)
dataset |
a data.frame with SCOPE outputs, a datetime variable and pixel numbers (timestamp, id_pixel) from the get_prediction function |
function_var |
aggregation function, default = sum . |
function_time |
to define the period use data.table::year, data.table::quarters, data.table::month, data.table::week, data.table::yday" for day of the year |
output_vars |
variables to map, default c("ET", "ET_soil", "ET_canopy"), |
period_var |
name for the ET, default "annual" |
input_raster |
the grip template (raster object, the same as the interpolation) |
NA_cells |
a vector the raster grid id_pixel masked and excluded from the SCOPE run |
Input_vector |
name of the sf polygon map object |
veg_fraction |
name of the vegetation fraction variable |
extract_fun |
get the max ET form the 1km grid, default = 'max', faster and suitable in case of coarse grid |
It will save the sf map with the Urban ET aggregated by the selected period .
Map Urban ET based on the SCOPE predictions
Urban_ET_map <- map_urbanET(dataset = Berlin2020_pred,
input_raster = krg_grid,
NA_cells = cellNA,
Input_vector = Green_vol,
veg_fraction = "vegproz",
function_var = sum,
function_time = data.table::year,
output_vars = c("ET", "ET_soil", "ET_canopy"),
period_var = "annual",
extract_fun = 'max')
plot(Urban_ET_map, border = "transparent", nbreaks=11,
pal=RColorBrewer::brewer.pal('RdYlBu', n = 11), reset=FALSE)
Urban_ET_map_hotday <- map_urbanET(dataset = Berlin2020_pred[as.IDate(timestamp) == "2020-08-08",], # hottest day subset
input_raster = krg_grid,
NA_cells = cellNA,
Input_vector = Green_vol,
veg_fraction = "vegproz",
function_var = sum,
function_time = data.table::yday,
output_vars = c("ET"),
period_var = "hottest_day",
extract_fun = 'max')
plot(Urban_ET_map_hotday, border = "transparent", nbreaks=11,
pal=RColorBrewer::brewer.pal('RdYlBu', n = 11), reset=FALSE)
Urban_ET_map_month <- map_urbanET(input_raster = krg_grid,
NA_cells = cellNA,
Input_vector = Green_vol,
veg_fraction = "vegproz",
dataset = Berlin2020_pred,
function_var = sum,
function_time = data.table::month,
output_vars = c("ET"),
period_var = "monthly",
extract_fun = 'max')
plot(Urban_ET_map_month[c(3,9,17,21)], border = "transparent", nbreaks=11,
pal=RColorBrewer::brewer.pal('RdYlBu', n = 11), reset=FALSE)
Urban_ET_map_quarter <- map_urbanET(dataset = Berlin2020_pred, # data.table with datetime, id_pixel and SCOPE outputs
input_raster = krg_grid, # raster used to interpolate and modelling
NA_cells = cellNA, # vector with the NA cells mask by the city (Berlin) border
Input_vector = Green_vol, # vector map (sf) with the vegetation fraction
veg_fraction = "vegproz", # name of the vegetation fraction var in the map (sf)
function_var = sum, # function to summarize (sum, mean, max, min)
function_time = quarter, # time to summarize (year, quarter, month, week, yday, hour). If hour or day maybe is need to reduce the range of the timestamp before run
output_vars = c("ET", "ET_canopy"), # possible outputs (ET, ET_soil, Tsave - see names(Berlin2020_pred)). If many, better year, quarter or up tp month
period_var = "quarter", # name to enumerate the period
extract_fun = 'max') # function to extract the raster values into the vector. If the raster is high-resolution use "mean", otherwise "max" (e.g. 1km grid)
plot(Urban_ET_map_quarter[c(3,7,11,15)], border = "transparent", nbreaks=11,
pal=RColorBrewer::brewer.pal('RdYlBu', n = 11), reset=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.