map_urban_cooling: map_urban_cooling

View source: R/map_urban_cooling.R

map_urban_coolingR Documentation

map_urban_cooling

Description

This function map greening cooling services based on the SCOPE outputs according to a selected period.

Usage

map_urban_cooling(
  dataset,
  date_hottest,
  function_var = list(max, sum),
  output_vars = c("ET", "Tsave", "Tcave"),
  input_raster,
  NA_cells,
  Input_vector,
  veg_fraction,
  extract_fun = "max"
)

Arguments

dataset

a data.frame with SCOPE outputs, a datetime variable and pixel numbers (timestamp, id_pixel) from the get_prediction function

date_hottest

to define the day to calculate the indices

output_vars

variables to map, default c("ET", "Tsave"),

input_raster

the grip template (raster object, the same as the interpolation)

NA_cells

a vector the raster grid id_pixel masked and excluded from the SCOPE run

Input_vector

name of the sf polygon map object

veg_fraction

name of the vegetation fraction variable

extract_fun

get the max ET form the 1km grid, default = 'max', faster and suitable in case of coarse grid

Value

It will save the split files in the SCOPE directory.

Examples

Map greening cooling services indices based on the SCOPE predictions
Cooling_maps_2000 <- map_urban_cooling(dataset = Berlin2020_pred,
                                      date_hottest = "2020-08-08",
                                      input_raster = krg_grid,
                                      NA_cells = cellNA,
                                      Input_vector = Green_vol,
                                      veg_fraction = "vegproz",
                                      output_vars = c("ET", "Tsave"),
                                      extract_fun = 'max')

summary(Cooling_maps_2000)

plot(Cooling_maps_2000[c(3,4,5)], border = "transparent", nbreaks=11,
    pal=RColorBrewer::brewer.pal('RdYlBu', n = 11), reset=FALSE)



AlbyDR/rSCOPE documentation built on Dec. 19, 2024, 7:29 p.m.