View source: R/map_urban_cooling.R
map_urban_cooling | R Documentation |
This function map greening cooling services based on the SCOPE outputs according to a selected period.
map_urban_cooling(
dataset,
date_hottest,
function_var = list(max, sum),
output_vars = c("ET", "Tsave", "Tcave"),
input_raster,
NA_cells,
Input_vector,
veg_fraction,
extract_fun = "max"
)
dataset |
a data.frame with SCOPE outputs, a datetime variable and pixel numbers (timestamp, id_pixel) from the get_prediction function |
date_hottest |
to define the day to calculate the indices |
output_vars |
variables to map, default c("ET", "Tsave"), |
input_raster |
the grip template (raster object, the same as the interpolation) |
NA_cells |
a vector the raster grid id_pixel masked and excluded from the SCOPE run |
Input_vector |
name of the sf polygon map object |
veg_fraction |
name of the vegetation fraction variable |
extract_fun |
get the max ET form the 1km grid, default = 'max', faster and suitable in case of coarse grid |
It will save the split files in the SCOPE directory.
Map greening cooling services indices based on the SCOPE predictions
Cooling_maps_2000 <- map_urban_cooling(dataset = Berlin2020_pred,
date_hottest = "2020-08-08",
input_raster = krg_grid,
NA_cells = cellNA,
Input_vector = Green_vol,
veg_fraction = "vegproz",
output_vars = c("ET", "Tsave"),
extract_fun = 'max')
summary(Cooling_maps_2000)
plot(Cooling_maps_2000[c(3,4,5)], border = "transparent", nbreaks=11,
pal=RColorBrewer::brewer.pal('RdYlBu', n = 11), reset=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.