TMFG: Triangulated Maximally Filtered Graph

Description Usage Arguments Value Author(s) References Examples

View source: R/TMFG.R

Description

Applies the Triangulated Maximally Filtered Graph (TMFG) filtering method (Please see and cite Massara et al., 2016)

Usage

1
2
TMFG(data, normal = FALSE, na.data = c("pairwise", "listwise", "fiml",
  "none"), depend = FALSE)

Arguments

data

Can be a dataset or a correlation matrix

normal

Should data be transformed to a normal distribution? Input must be a dataset. Defaults to FALSE. Data is not transformed to be normal. Set to TRUE if data should be transformed to be normal (computes correlations using the cor_auto function)

na.data

How should missing data be handled? For "listwise" deletion the na.omit function is applied. Set to "fiml" for Full Information Maxmimum Likelihood (corFiml). Full Information Maxmimum Likelihood is recommended but time consuming

depend

Is network a dependency (or directed) network? Defaults to FALSE. Set to TRUE to generate a TMFG-filtered dependency network (output obtained from the depend function)

Value

Returns a list containing:

A

The filtered adjacency matrix

separators

The separators (3-cliques) in the network (wrapper output for LoGo)

cliques

The cliques (4-cliques) in the network (wrapper output for LoGo)

Author(s)

Alexander Christensen <[email protected]>

References

Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the Wisconsin Schizotypy Scales-Short Forms: Examining psychometric network filtering approaches. Behavior Research Methods, 1-20. doi: 10.3758/s13428-018-1032-9

Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big data: Triangulated maximally filtered graph. Journal of Complex Networks, 5, 161-178. doi: 10.1093/comnet/cnw015

Examples

1
TMFG.net <- TMFG(neoOpen)

AlexChristensen/NetworkToolbox documentation built on Nov. 6, 2018, 2:54 a.m.