#' @title Bayesian risk of shinkage rule under beta prior.
#' @description Provides the bayesian risk of the wavelet shrinkage rule under beta prior.
#' @param alpha Weight of the point mass at zero function of the prior.
#' @param a Shape parameter of the beta prior.
#' @param b Shape parameter of the beta prior.
#' @param m Upper value of the beta prior support.
#' @param s Standard deviation of the normal random noise.
#'
#' @return The bayesian risk value of the shrinkage rule.
#' @export
#'
#' @examples betabayesrisk(0.9,2,3,10,1)
betabayesrisk = function(alpha,a,b,m,s){
betadist = function(x,a,b,m){
betadist = vector()
for(i in 1:length(x)){
if(abs(x[i])<=m)
betadist[i] = (x[i]+m)^(a-1)*(m-x[i])^(b-1)/((2*m)^(a+b-1)*beta(a,b))
else
betadist[i]=0
}
return(betadist)
}
integrand = function(theta){
betaclasrisk(theta,alpha,a,b,m,s)*betadist(theta,a,b,m)
}
int = integrate(integrand,lower = -m, upper = m)$value
betabayesrisk = (alpha)*betaclasrisk(0,alpha,a,b,m,s) + (1-alpha)*int
betabayesrisk
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.