#' @title Bias of shinkage rule under beta prior.
#' @description Provides the bias of the wavelet shrinkage rule under beta prior.
#' @param theta Wavelet coefficients vector.
#' @param alpha Weight of the point mass at zero function of the prior.
#' @param a Shape parameter of the beta prior.
#' @param b Shape parameter of the beta prior.
#' @param m Upper value of the beta prior support.
#' @param s Standard deviation of the normal random noise.
#'
#' @return Vector of bias of the shrinkage rule.
#' @export
#'
#' @examples betabias(c(0,1,2),0.9,2,3,10,1)
betabias = function(theta,alpha,a,b,m,s){
n = length(theta)
betabias = NA
for(i in 1:n){
integrand = function(z){
betashrink(theta[i]+s*z,alpha,a,b,m,s)*dnorm(z)
}
expec = integrate(integrand,lower = -10, upper = 10)$value
betabias[i] = theta[i] - expec
}
betabias
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.