#' @title Classical risk of shinkage rule under logistic prior.
#' @description Provides the classical risk of the wavelet shrinkage rule under logistic prior.
#' @param theta Wavelet coefficients vector.
#' @param alpha Weight of the point mass at zero function of the prior.
#' @param t Scale parameter of the logistic prior.
#' @param s Standard deviation of the normal random noise.
#'
#' @return Vector of classical risks of the shrinkage rule.
#' @export
#'
#' @examples logclasrisk(c(0,1,2),0.9,1,1)
logclasrisk = function(theta,alpha,t,s){
n = length(theta)
logclasrisk = NA
for(i in 1:n){
integrand = function(z){
(theta[i] - logshrink(theta[i]+s*z,alpha,t,s))^2*dnorm(z)
}
logclasrisk[i] = integrate(integrand,lower = -10, upper =10)$value
}
logclasrisk
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.